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Logistic Regression

In this chapter, we will mainly consider one statistic model, namely logistic regres-
sion, to define classifier for linearly separable sets. In the next chapter, we will study
another statistical model, namely support vector machine (SVM). These two linear
models form the foundation of deep learning, since the final fully connected output
layer of a deep neural network is often give by one of these two linear classifiers.
The general intuition is that linear classification models will work well when the dif-
ferent classes are approximately linearly separable. This assumption is made explicit
for the SVM model, but the situation is a bit more subtle with the logistic regression.

1.1 Definition of linearly separable sets

In this section, we consider a special class of separable sets, namely linearly separa-
ble sets. Let us formally introduce the following definition.

1.1.1 Binary classification

For k = 2, there is a very simple geometric interpretation of two linearly separable
sets.

Definition 1. The two sets A1, A2 ⊂ R
d are linearly separable if there exists a hyper-

plane

(1.1) H0 = {x : wx + b = 0},

such that wx + b > 0 if x ∈ A1 and wx + b < 0 if x ∈ A2.

Lemma 1. The two sets A1, A2 ⊂ R
d are linearly separable if there exists a hyper-

plane linearly separable if there exists

(1.2) W =

(
w1
w2

)
∈ R2×d, b =

(
b1
b2

)
∈ R2×d,
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Fig. 1.1. Two linearly separable sets

Fig. 1.2. Two Non-linearly separable sets

such that, for each 1 ≤ i ≤ 2 and j , i

(1.3) w1x + b1 > w2x + b2, ∀x ∈ A1,

and

(1.4) w1x + b1 < w2x + b2, ∀x ∈ A2.

Proof. Here, we can just take w = w1 − w2 and b = b1 − b2, then we can check
that the hyperplane wx + b satisfies the definition as presented before.

1.1.2 Multi-class classification

To begin with the definition, let us assume that the data space is divided into k classes
represented by k disjoint sets A1, A2, · · · , Ak ⊂ R

d, which means

(1.5) A = A1 ∪ A2 ∪ · · · ∪ Ak, Ai ∩ A j = ∅,∀i , j.

Definition 2 (Linearly Separable). A collection of subsets A1, ..., Ak ⊂ R
d are lin-

early separable if there exist

(1.6) W =


w1
...

wk

 ∈ Rk×d, b =


b1
...

bk

 ∈ Rk×d,
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such that, for each 1 ≤ i ≤ k and j , i

(1.7) (Wx + b)i > (Wx + b) j, ∀x ∈ Ai,

or

(1.8) wix + bi > w jx + b j, ∀x ∈ Ai.

1.1.3 Geometric interpretation for multi-label cases (k > 2)

The geometric interpretation for linearly separable sets is less obvious when k > 2.

Lemma 2. Assume that A1, ..., Ak are linearly separable and W ∈ Rk×d and b ∈ Rk

satisfy (1.6). Define

(1.9) Γi(W, b) = {x ∈ Rd : (Wx + b)i > (Wx + b) j, ∀ j , i}

Then for each i,

(1.10) Ai ⊂ Γi(W, b)

We note that each Γi(W, b) is a polygon whose boundary consists of hyperplanes

(1.11) Hi j = {(wi − w j) · x + (bi − b j) = 0}, ∀ j , i.

Fig. 1.3. Linearly separable sets in 2-d space (k = 3)

1.1.4 Two more definitions of linearly separable sets

We next introduce two more definitions of linearly separable sets that have more
clear geometric interpretation.

Definition 3 (All-vs-One Linearly Separable). A collection of subsets A1, ..., Ak ⊂

Rd is all-vs-one linearly separable if for each i = 1, ..., k, Ai and ∪ j,iA j are linearly
separable.
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Fig. 1.4. All-vs-One linearly separable sets (k = 3)

Definition 4 (Pairwise Linearly Separable). A collection of subsets A1, ..., Ak ⊂ R
d

is pairwise linearly separable if for each pair of indices 1 ≤ i < j ≤ k, Ai and A j are
linearly separable.

Fig. 1.5. Pairwise linearly separable sets in 2-d space (k = 3)
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1.1.5 Comparison of different definitions of linearly separable sets

Fig. 1.6. All-vs-One linearly separable sets (k = 3)

Fig. 1.7. Linearly separable sets in 2-d space (k = 3)

Fig. 1.8. Pairwise separable but not linearly separable sets

We begin by comparing our notion of linearly separable to the two other previously
introduced geometric definitions of all-vs-one linearly separable and pairwise lin-
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eaerly separable. Obviously, in the case of two classes, they are all equivalent, how-
ever, with more than two classes this is no longer the case. We do have the following
implications, though.

Lemma 3. If A1, ..., Ak ⊂ R
d are all-vs-one linearly separable, then they are linearly

separable as well.

Proof. Assume that A1, ..., Ak are all-vs-one linearly separable. For each i, let wi,
bi be such that wix + bi separates Ai from ∪ j,iA j, i.e. wix + bi > 0 for x ∈ Ai and
wix + bi < 0 for x ∈ ∪ j,iA j.

Set W = (wT
1 ,w

T
2 , · · · ,w

T
k )T , b = (b1, b2, · · · , bk)T and observe that if x ∈ Ai, then

(Wx + b)i > 0 while (Wx + b) j < 0 for all j , i.

Lemma 4. If A1, ..., Ak ⊂ R
n are linearly separable, then they are pairwise linearly

separable as well.

Proof. If A1, ..., Ak ⊂ R
d are linearly separable, suppose that W = (wT

1 ,w
T
2 , · · · ,w

T
k )T ,

b = (b1, b2, · · · , bk)T . So we have

(1.12)

wix + bi > w jx + b j x ∈ Ai

wix + bi < w jx + b j x ∈ A j

Take wi, j = wi − w j, bi, j = bi − b j, then we have

(1.13) wi, jx + bi, j

> 0 x ∈ Ai

< 0 x ∈ A j

So A1, ..., Ak are pairwise linearly separable.
However, the converses of both of these statements are false, as the following

examples show.

Example 1 (Linearly separable but not all-vs-one linearly separable). Consider the
sets A1, A2, A3 ⊂ R given by A1 = [−4,−2], A2 = [−1, 1], and A3 = [2, 4]. These sets
are clearly not one-vs-all linearly separable because A2 cannot be separated from
both A1 and A3 by a single plane (in R this is just cutting the real line at a given
number, and A2 is in the middle).

However, these sets are linearly separated by W = [−2, 0, 2]T and b = [−3, 0,−3]T ,
for example.

Example 2 (Pairwise linearly separable but not linearly separable). Consider the
sets A1, A2, A3 ⊂ R

2 shown in figure 1.9. Note that Ai and A j are separated by hyper-
plane Hi, j (drawn in the figure) and so these sets are pairwise linearly separable. We
will show that they are not linearly separable.

Assume to the contrary that W ∈ R3×2 and b ∈ R2 separates A1, A2, and A3. Then
(wi − w j)x + (bi − b j) must be a plane which separates Ai and A j. Now consider the
point z in figure 1.9. We see from the figure that given any plane separating A1 from
A2, z must be on the same side as A2, given any plane separating A2 from A3, z must
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be on the same side as A3, and given any plane separating A3 from A1, z must be on
the same side as A1.

This means that (w2 − w1)z + (b2 − b1) > 0, (w3 − w2)z + (b3 − b2) > 0, and
(w1 − w3)z + (b1 − b3) > 0. Adding these together, we obtain 0 > 0, a contradiction.

The essence behind this example is that although the sets A1, A2, and A3 are
pairwise linearly separable, no possible pairwise separation allows us to consistently
classify arbitrary new points. However, a linear separation would give us a consistent
scheme for classifying new points.

Fig. 1.9. Pairwise separable but not linearly separable sets

So the notion of linear separability is sandwiched in between the more intuitive
notions of all-vs-one and pairwise separability. It turns out that linear separability is
the notion which is most useful for the k-class classification problem and so we focus
on this notion of separability from now on.
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