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Logistic Regression

1.1 Introduction to logistic regression

1.1.1 Plain logistic regression

We first introduce the next definition of the set of linearly classifiable weights.

Definition 1 (the set of linearly classifiable weights). Assume that we are given k
linearly separable sets A1, A2, · · · , Ak ∈ R

d, we define the set of classifiable weights
as

(1.1) Θ = {θ = (W, b) : wix + bi > w jx + b j, ∀x ∈ Ai, j , i, i = 1, · · · , k}

which means those (W, b) can separate A1, A2, · · · , Ak absolutely correctly.

Our linearly separable assumption implies that Θ , ∅. Now we know the existence
of linearly classifiable weights. But how can we find one element inΘ?

Definition 2 (soft-max). Given parameter θ = (W, b), a soft-max mapping p : Rd →

Rk is a mapping with the following formulation

(1.2) p(x;θ) =
eWx+b

eWx+b · 1
=

1
k∑

i=1
ewi x+bi


ew1 x+b1

ew2 x+b2

...
ewk x+bk

 =


p1(x;θ)
p2(x;θ)

...
pk(x;θ)



where eWx+b =


ew1 x+b1

ew2 x+b2

...
ewk x+bk

, 1 =


1
1
...
1

 ∈ Rk, and the i-th component

(1.3) pi(x;θ) =
ewi x+bi

k∑
i=1

ewi x+bi

.



1.1. INTRODUCTION TO LOGISTIC REGRESSION

The soft-max mapping have several important properties.

1. 0 < pi(x;θ) < 1,
∑

i pi(x;θ) = 1.
2. pi(x;θ) > p j(x;θ)⇔ wix + bi > w jx + b j. This implies that the linearly

classifiable weights have an equivalent description as

(1.4) Θ =
{
θ : pi(x;θ) > p j(x;θ), ∀x ∈ Ai, j , i, i = 1, · · · , k

}
3. We usually use the max-out method to do classification. For a given data point

x, we first use a soft-max mapping to map it to p(x;θ), then we attached x to the
class i = arg max j pi(x;θ).

Remark 1. The first property implies that p(x;θ) can be regarded as a probability
distribution of data points which means given x ∈ Rd, we have x ∈ Ai with probability
pi(x;θ), i = 1, · · · , k.

The last properties means we pick the label i as the class of x such that x ∈ Ai

has the biggest probability pi(x;θ).
More detailed discussion of logistic regression from the probability perspective

will be presented in the nearly future.

From the above properties, we can define the next likelihood function to help find
elements in Θ:

(1.5) P(θ) =

k∏
i=1

∏
x∈Ai

pi(x;θ)

where this likelihood function comes from its probabilistic interpretation which we
will discuss later. Based on the property that

(1.6) pi(x;θ) = max
1≤ j≤k

p j(x;θ),∀x ∈ Ai,

if θ ∈ Θ. This somehow means that if

(1.7) P(θ) =

k∏
i=1

∏
x∈Ai

pi(x;θ) = max,

if θ ∈ Θ. Or we say that we may use the next optimization problem

(1.8) max
θ

P(θ).

to find an element in Θ.
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CHAPTER 1. LOGISTIC REGRESSION

More precisely, let us introduce the next lemmas (properties) of P(θ).

Lemma 1. Assume that the sets A1, A2, · · · , Ak are linearly separable. Then we have

(1.9)
{
θ : P(θ) >

1
2

}
⊂ Θ.

Proof. It suffices to show that if θ < Θ, we must have P(θ) ≤ 1
2 . For any θ < Θ,

there must exist an i0 ,an x0 ∈ Ai0 and a j0 , i0 such that

(1.10) wi0 x0 + bi0 ≤ w j0 x0 + b j0 .

Then we have

(1.11) pi0 (x0;θ) ≤
ewi0 x0+bi0

ewi0 x0+bi0 + ew j0 x0+b j0
≤

1
2
.

Notice that pi(x;θ) < 1 for all i = 1, · · · , k, x ∈ A. So

(1.12) P(θ) < pi0 (x0;θ) ≤
1
2
.

Lemma 2. If A1, A2, · · · , Ak are linearly separable and θ ∈ Θ, we have

(1.13) lim
α→+∞

pi(x;αθ) = 1⇔ x ∈ Ai.

Proof. We first note that if x ∈ Ai,

(1.14) pi(θ, x) =
1

1 +
∑
j,i

eα[(w j x+b j)−(wi x+bi)]
→ 1, as α→ ∞.

On the other hand, if x < Ai,

(1.15) pi(x;αθ) =
1

1 +
∑
j,i

eα[(w j x+b j)−(wi x+bi)]
≤

1
2
.

This implies that if x < Ai, limα→∞ pi(x;αθ) , 1 which is equivalent to the proposi-
tion that if limα→∞ pi(x;αθ) = 1, then x ∈ Ai.

Lemma 3. If A1, A2, · · · , Ak are linearly separable,

(1.16) Θ =

{
θ : lim

α→+∞
P(αθ) = 1

}
.

Proof. We first note that if θ ∈ Θ, we have limα→+∞ pi(x;αθ) = 1 for all x ∈ Ai.
So
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1.1. INTRODUCTION TO LOGISTIC REGRESSION

(1.17) lim
α→+∞

H(αθ) = lim
α→+∞

k∏
i=1

∏
x∈Ai

pi(x;αθ) =

k∏
i=1

∏
x∈Ai

lim
α→+∞

pi(x;αθ) = 1.

On the other hand, if lim
α→+∞

P(αθ) = 1, there must exist one α0 > 0 such that P(α0θ) >
1
2 . From Lemma 1, we have α0θ ∈ Θ, which means θ ∈ Θ.

These properties above imply that if we can obtain a classifiable weight through
maximizing P(θ), while lemma 3 tells us that P(θ) will not have a minimum actually.

More specifically, we just need to find some θ ∈ Θ such that

(1.18) P(Θ) >
1
2
⇔ L(θ) := − log P(θ) < log(2).

Question: how to find these element?

1.1.2 Regularized logistic regression

Here, we start from the regularization term e−λR(‖θ‖) with these next properties:

1. λ > 0.
2. R(t) is a strictly increasing function on R+ with R(0) = 0, lim

t→+∞
R(t) = +∞. For

example, R(t) = t2.
3. ‖ · ‖ is a norm on Rk×(d+1), a commonly used norm is the following Frobenius

norm:

(1.19) ‖θ‖F =

√∑
i, j

W2
i j +

∑
i

b2
i .

Based on this regularization term, we may consider the following regularized
likelihood function Pλ(θ) as

(1.20) Pλ(θ) = P(θ)e−λR(‖θ‖).

Here, let us define

(1.21) Θλ = arg max
θ

Pλ(θ),

where we have the next definition of arg max

(1.22) arg max
θ

Pλ(θ) =

{
θ : Pλ(θ) = max

θ
Pλ(θ)

}
.

The next lemma show that the maximal set of modified objective is not empty.

Lemma 4. Suppose that A1, A2, · · · , Ak are linearly separable, then

1. if λ = 0,Θ0 = ∅,
2. Θλ must be nonempty for all λ > 0.
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CHAPTER 1. LOGISTIC REGRESSION

Proof. Lemma 3 shows the first proposition. For the second proposition, we no-
tice that

1. Pλ(0) = 1
kN .

2. ∃ Mλ > 0 such that e−λR(‖θ‖) < 1
kN whenever ‖θ‖ > Mλ because of the properties

of R(‖θ‖).

So a maxima on {θ : ‖θ‖ < Mλ}must be a global maxima. Then we can easily obtain
the result in the lemma from the boundedness and closeness of {θ : ‖θ‖ < Mλ}.

Furthermore, we have the next theorem which shows that we can indeed get Θ
by maximizing Pλ(θ).

Theorem 1. If A1, A2, · · · , Ak are linearly separable,

(1.23) Θλ ⊂ Θ,

when λ > 0 and sufficiently small.

Proof. By Lemma 1, we can take θ0 ∈ Θ such that P(θ0) > 3
4 . Then, for any

λ <
log 3

2
R(‖θ0‖)

, θλ ∈ Θλ, we have

P(θλ) ≥ Pλ(θλ) ≥ Pλ(θ0) = P(θ0)e−λR(‖θ0‖) >
3
4
·

2
3

=
1
2
,

which implies that θλ ∈ Θ. Thus, for any 0 < λ < log 3
2

R(‖θ0‖)
,Θλ ⊂ Θ.

The design of logistic regression is that maximize Pλ(θ) is equivalent to minimize
− log Pλ(θ), i.e.,

(1.24) max
θ
{Pλ(θ)} ⇔ min

θ

{
− log Pλ(θ)

}
,

while the second one is more convenient to evaluate the gradient. Meanwhile, we add
a regularization term R(θ) to the objective function which makes the optimization
problem has a unique solution.

Mathematically, we can formulate Logistic regression as

(1.25) min
θ

Lλ(θ),

where

(1.26) Lλ(θ) := − log Pλ(θ) = − log P(θ) + λR(‖θ‖) = L(θ) + λR(‖θ‖),

with

(1.27) L(θ) = −

k∑
i=1

∑
x∈Ai

log pi(x;θ).

Then we have the next logistic regression algorithm.
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1.1. INTRODUCTION TO LOGISTIC REGRESSION

Algorithm 1 Logistic Regression
Given data A1, A2, · · · , Ak, find

(1.28) θ∗ = arg min
θ

Lλ(θ),

for some sufficient small λ > 0.

Remark 2. Here

(1.29) L(θ) = − log P(θ),

is known as the loss function of logistic regression model. The next reasons may
show that why L(θ) is popular.

1. It is more convenient to take gradient for L(θ) than P(θ).
2. L(θ) is related the so-called cross-entropy loss function which will be discussed

in the next section.
3. L(θ) is a convex function which will be discussed later.
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