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0.1 KL divergence, cross-entropy and logistic regression

KL divergence and cross-entropy

Given two discrete probability distributions,

p =


p1
...

pk

 , q =


q1
...

qk


namely 0 ≤ pi, qi ≤ 1 and

∑k
i=1 pi =

∑k
i=1 qi = 1. The KL divergence defines a special

distance between p and q:

(0.1) DKL(q, p) =
k∑

i=1

qi log
qi

pi
.

DKL(q, p) works like a “distance” without the symmetry:

Lemma 1.

1. DKL(q, p) ≥ 0;
2. DKL(q, p) = 0 if and only if p = q;

Proof. We first note that the elementart inequality

(0.2) log x ≤ x − 1, for any x ≥ 0,

and the equality holds if and only if x = 1.



0.1. KL DIVERGENCE, CROSS-ENTROPY AND LOGISTIC REGRESSION

(0.3) − DKL(q, p) = −
c∑

i=1

qi log
qi

pi
=

k∑
i=1

qi log
pi

qi
≤

k∑
i=1

qi(
pi

qi
− 1) = 0.

And the equality holds if and only if

(0.4)
pi

qi
= 1 ∀i = 1 : k.

Note that

(0.5) DKL(q, p) =
k∑

i=1

qi log
qi

pi
=

k∑
i=1

qi log qi −

k∑
i=1

qi log pi

We write

(0.6) H(q, p) = H(q) + DKL(q, p),

where

(0.7) H(q) = −
k∑

i=1

qi log qi,

which is called entropy for distribution p and

(0.8) H(q, p) = −
k∑

i=1

qi log pi.

which is called cross-entropy for distribution p and q.
It follows from the relation (0.6) that

(0.9) arg min
p

DKL(q, p) = arg min
p

H(q, p).

Cross-entropy

In §0.1 we introduced the concept of cross-entropy, which can be used to define a
loss function in machine learning and optimization. Let us assume yi is the true label
for xi, for example yi = eki if xi ∈ Aki . Then ,consider the predicted distribution

(0.10) p(x;θ) =
1

k∑
i=1

ewi x+bi


ew1 x+b1

ew2 x+b2

...
ewk x+bk

 =

p1(x;θ)
p2(x;θ)

...
pk(x;θ)


for any data x ∈ A. By (0.9), we have
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(0.11) arg min
θ

N∑
i=1

DKL(yi,p(xi;θ)) = arg min
θ

N∑
i=1

H(yi,p(xi;θ)),

Recall that we have all data D = {(x1, y1), (x2, y2), · · · , (xN , yN)}. Then, it is natu-
ral to consider the loss function as following:

(0.12)
N∑

j=1

H(yi,p(xi;θ)),

which measures the distance between the real label and predicted one for all data. In
the meantime, we can check that

(0.13)

N∑
j=1

H(y j,p(x j;θ)) = −
N∑

j=1

y j · logp(x j;θ)

= −

N∑
j=1

log pi j (xi;θ) (because y j = ei j for x j ∈ Ai j )

= −

k∑
i=1

∑
x∈Ai

log pi(x;θ)

= − log
k∏

i=1

∏
x∈Ai

pi(x;θ)

= L(θ)

That is to say, the logistic regression loss function defined by likelihood is exact
the loss function defined by measuring the distance between real label and predicted
one via cross-entropy. Or we can note as
(0.14)

min
θ

Lλ(θ)⇔ min
θ

N∑
j=1

H(yi,p(xi;θ))+λR(‖θ‖)⇔ min
θ

N∑
j=1

DKL(yi,p(xi;θ))+λR(‖θ‖).
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