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0.1 KL divergence, cross-entropy and logistic regression

KL divergence and cross-entropy

Given two discrete probability distributions,

Pk qk
namely 0 < p;,g; < 1 and Zf:] pi = Z;‘:l q; = 1. The KL divergence defines a special
distance between p and g:

k
(0.1) Dxui(g, p) = Z qilog %-

i=1 !
Dx1.(g, p) works like a “distance” without the symmetry:
Lemma 1.

1. Dxi(q, p) 2 0;
2. Dxi(q.p) =0ifand only if p = q;

Proof. We first note that the elementart inequality
0.2) logx<x-1, foranyx>0,

and the equality holds if and only if x = 1.
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c k k
03)  -Dalgp=-y gilogL =% glogZ <3 & -1)=0.
i=1 pi i3 g = 4
And the equality holds if and only if
0.4) Pioy wi=1:k
qi
0
Note that
k 4 k k
0.5) Dxi(q, p) = Z qilog 171- = Z qiloggi - Z qilog p;
i=1 ] i=1
We write
(0.6) H(q, p) = H(q) + DxL(g. p),
where
k
0.7) H(g) == ) ailoga;,
i=1

which is called entropy for distribution p and

k
0.8) H(g,p) == ) ailogpi.

i=1

which is called cross-entropy for distribution p and g.
It follows from the relation (0.6) that

0.9) arg min Dgj (g, p) = argmin H(q, p).
p P

Cross-entropy

In §0.1 we introduced the concept of cross-entropy, which can be used to define a
loss function in machine learning and optimization. Let us assume y; is the true label
for x;, for example y; = ¢, if x; € Ay,. Then ,consider the predicted distribution

ew1x+b1 P (X; 0)
1 ewzx+b2 pz(x; 0)
(0.10) px;0)=—| . |= .

ew;x+bi

T

; et )\ pi(x; 0)

for any data x € A. By (0.9), we have
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0.11 arg min D i, p(xi; @) = arg min H®;, p(x;; 0)),
0.11) er Z; kL P 0) = argr Z] 01, P(x;3 0))

Recall that we have all data D = {(x1, y1), (x2,¥2), - , (xn, ¥n)}. Then, it is natu-
ral to consider the loss function as following:

N
0.12) > HOi,p(xi; 0),
=1

which measures the distance between the real label and predicted one for all data. In
the meantime, we can check that
N N

D H(;plxj0) = -
=1 =1
N

y;j - log p(x;; 6)

log pi;(xi;0) (because y; = e¢;; for x; € A;)
j=1

k
=- Z Z log pi(x; 0)

i=1 xeA;

k
= —log l_[ 1—[ pi(x;0)

i=1 xeA;

(0.13)

= L)

That is to say, the logistic regression loss function defined by likelihood is exact
the loss function defined by measuring the distance between real label and predicted
one via cross-entropy. Or we can note as

(0.14)
N N

min Ly(6) & min > H(yi. plx: 6)+AR(IO) & min Y Dyt (v, plxis )+ AR(I61).

= j=1
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