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0.1 Binary LR and SVM and their relations

Given a binary linealy separable classification dataset (xi, yi)N
i=1, where xi ∈ R

d, yi ∈

{−1,+1}. We use A1, A2 to denote the data with label +1,−1 respectively. Our goal
is to find a θ = (w, b) where w ∈ R1×d, b ∈ R such that the hyperplane Hθ = {x :
wx + b = 0} can separate A1, A2.

0.1.1 Binary SVM

Binary SVM wants to find the classifiable hyperplane which has the biggest distance
with A1 and A2.

(0.1) max
w,b

mini yi(wxi + b)
‖w‖2

Intuitively, the best separating hyperplane H are only determined by those data
points who are closest to H. Those data points are called support vector, and this
method are called support vector machine.

Without loss of generality, we may restrict the norm of ‖w‖ to be 1, which leads
to a equivalent optimization problem

(0.2) max
‖w‖2=1

min
i

yi(wxi + b)

Actually, we can prove argmax‖w‖2=1 mini yi(wxi + b) is nonempty, but here we
just admit this fact and only prove the uniqueness of the solution.



0.1. BINARY LR AND SVM AND THEIR RELATIONS

Lemma 1. If A1, A2 are linearly separable, then

(0.3) argmax
‖w‖2=1

min
i

yi(wxi + b)

is a singleton set.

Proof. Denote m(w, b) = mini yi(wxi + b). Notice that m(w, b) is a concave homo-
geneous function w.r.t w, b and ‖ · ‖2 is a strictly convex norm. Suppose there are two
solution (w1, b1) and (w2, b2) such that w1 , w2, take w = w1+w2

2 , b = b1+b2
2 , we must

have

(0.4) m(w, b) ≥
m(w1, b1) + m(w2, b2)

2
= max
‖w‖2=1

m(w, b),

and

(0.5) ‖w‖2 < 1.

So

(0.6) m(
w
‖w‖2

,
b
‖w‖2

) =
m(w, b)
‖w‖2

> max
‖w‖2=1

m(w, b),

which leads to a contradiction. So all the solution must have the same w, we denote
it as w∗. Then if (w∗, b∗) is a solution of problem (0.3), we must have

(0.7) b∗ ∈ argmax
b

m(w∗, b)

Actually,

(0.8) m(w∗, b) = min{b + min
x∈A1

w∗x,−b + min
x∈A2

(−w∗x)},

easy to observe that argmaxb m(w∗, b) is a singleton set and

(0.9) b∗ =
minx∈A2 (−w∗x) −minx∈A1 w∗x

2
.

Denote

(0.10) θ∗S V M = (w∗S V M , b
∗
S V M) = argmax

‖w‖=1
min

i
yi(wxi + b).
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Theorem 1. w∗S V M must be a linear combination of xT
i , i = 1, 2, · · · ,N.

Proof. Denote

(0.11) S = span{xT
i }

N
i=1

Then we have

(0.12) R1×d = S ⊕⊥ S ⊥

So w∗S V M can be uniquely decomposed as w∗S V M = w∗S + w∗S ⊥ where wS ∈ S and
w∗S ⊥ ∈ S ⊥. We will prove that w∗S ⊥ = 0. Suppose not, we have

(0.13) ‖w∗S ‖2 < ‖w
∗‖2 = 1.

Notice that

(0.14) w∗S V M xi = w∗S xi, ∀i = 1, 2, · · · ,N.

Thus we have

(0.15) min
i

yi(w∗S V M xi + b∗) = min
i

yi(w∗S xi + b∗)

So

(0.16) min
i

yi(w∗S V M xi +b∗S V M) <
mini yi(w∗S xi + b∗S V M)

‖w∗S ‖
= min

i
yi(

w∗S
‖w∗S ‖2

xi +
b∗S V M

w∗S
),

which leads to a contradiction to the definition of θ∗S V M .
We may rewrite the SVM problem as

min
w,b
‖w‖2,(0.17)

s.t. yi(wxi + b) ≥ 1, ∀i.(0.18)

We can simply prove that the solution of (0.20) is θ∗S V M multiplies a positive
scalar. So it still satisfies the representer theorem. Thus we can restrict w to be in the
set S . Assume that

(0.19) w =

N∑
i=1

αixT
i ,

Denote α = (α1, · · · , αN)T , and D ∈ RN×N where Di j =< xi, x j >. We can rewrite the
problem (0.20) as

min
w,b

αT Dα,(0.20)

s.t. yi(
N∑

j=1

< x j, xi > α j + b) ≥ 1, ∀i.(0.21)

We can see that the whole problem is only determined by the inner product of data
points but not the data itself. What we called kernel method is just use a symmetric
positive definite kernel function to replace the inner product. Such kernel function
can be regarded as a inner product of some feature space.
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0.1. BINARY LR AND SVM AND THEIR RELATIONS

0.1.2 Binary Logistic Regression

For binary logistic regression, our score mapping can be written as
( 1

1+e−(wx+b)
1

1+ewx+b

)
. We

can observe that, (w, b) is classifiable if and only if

(0.22)
1

1 + e−yi(wx+b) >
1
2
, ∀i = 1, 2 · · · ,N.

So we may consider to maximize following objetive

(0.23) P(θ) =

N∏
i=1

1
1 + e−yi(wx+b) ,

which is equivalent to minimize

(0.24) L(θ) = − log P(θ) =

N∑
i=1

− log(1 + e−yi(wx+b)),

Lemma 2. L(θ) is a strictly convex function without any global minima.

To let the above problem have a global minima, we may add a L2 regularization
term as following

(0.25) L(θ, λ) = L(θ) + λ‖w‖22 =

N∑
i=1

− log(1 + e−yi(wx+b)) + λ‖w‖22,

Actually, we can prove argminw,b L(θ, λ) is nonempty for λ sufficiently small, but
here we just admit this fact and only prove the uniqueness of the solution.

Lemma 3. If A1, A2 are linearly separable, then

(0.26) argmin
w,b

L(θ, λ)

is a singleton set for λ sufficiently small.

Proof. Because L(θ) is strictly convex w.r.t. θ and ‖w‖2 is convex w.r.t. θ, so
L(θ, λ) = L(θ) + λ‖w‖22 is stricly convex w.r.t. θ, which implies our result directly.

For λ sufficiently small, denote

(0.27) θLR(λ) = (wLR(λ), bLR(λ)) = argmin
w,b

L(θ, λ).

Theorem 2. If A1, A2 are linearly separable, then θLR(λ)
‖wLR(λ)‖ converge to θ∗S V M as λ→ 0,

i.e.

(0.28) θ∗S V M = lim
λ→0

θLR(λ)
‖wLR(λ)‖

.
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