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Logistic Regression

1.1 Optimization: gradient descent method

We finish the study of logistic regression with solving the next optimization problem

(1.1) min
θ

Lλ(θ).

For simplicity, let us just consider the next general optimization problem

(1.2) min
x∈Rn

f (x).

A general approach: line search method

Here we propose the next descent scheme to produce {xt}
∞
t=1

(1.3) xt+1 = xt + ηt pt,



1.1. OPTIMIZATION: GRADIENT DESCENT METHOD

where ηt is called the step size in optimization and also learning rate in machine
learning. pt is called the descent direction, which is the critical component of this
algorithm. There is a series of optimization algorithms which follow the above form
just using different choices of pt.

The main method that we will discuss here is the so-called gradient descent
method.

1.1.1 Multi-variable calculus

To begin with the gradient based optimization, it is necessary to review some multi-
variable calculus aspects and definition of convex functions.

At the very beginning, let us recall the definition of gradient and Hessian matrix
for function f : Rn → R.

Definition 1. Given objective function f : Rn → R and x = (x1, x2, . . . , xn)T ∈ Rn,
the gradient of f (x) is defined by

(1.4) g(x) := ∇ f (x) =


∂ f (x)
∂x1
∂ f (x)
∂x2
...

∂ f (x)
∂xn

 ,
Then, the next natural question is what a good choice of pt is? We have the next

theorem to show why gradient direction is a good choice for pt.
Before that, let us introduce one often-used inequality.

Lemma 1 (Cauchy-Schwarz inequality). For any x = (x1, . . . , xn)T and x =

(y1, . . . , yn)T , we have

(1.5)

 n∑
i=1

xiyi

2

≤

 n∑
i=1

x2
i

  n∑
i=1

y2
i

 ,
where equality holds if and only if for some k ∈ C, xi

yi
= k, or in inner form:

(1.6) |〈x, y〉| ≤ ‖x‖ · ‖y‖.

Proof. In the case of y = 0, the inequality holds. Now assume y , 0, then

(1.7)

‖x − λy‖2 =〈x, x〉 − 〈x, λy〉 − 〈λy, x〉 + 〈λy, λy〉
=〈x, x〉 − λ̄〈x, y〉 − λ〈y, x〉 + λ̄λ〈y, y〉

=‖x‖2 − λ̄〈x, y〉 − λ〈x, y〉 + λ̄λ‖y‖2,

Let λ =
〈x,y〉
‖y‖2 , the above formula can be

(1.8) 0 ≤ ‖x − λy‖2 = ‖x‖2 −
|〈x, y〉|2

‖y‖2
.

If the inequality holds as an equality, x and y are linearly dependent.
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CHAPTER 1. LOGISTIC REGRESSION

Theorem 1. To choose descent directions p ∈ Rn, we have

(1.9) −
∇ f (x)
‖∇ f (x)‖

= arg min
p∈Rn,‖p‖=1

∂ f (x + ηp)
∂η

∣∣∣∣∣
η=0

.

Proof. First, we have

(1.10)
∂ f (x + ηp)

∂η

∣∣∣∣∣
η=0

= ∇ f (x) · p.

Then notice the Cauchy-Schwarz inequality and the constrain that ‖p‖ = 1,

(1.11) |∇ f (x) · p| ≤ ‖∇ f (x)‖‖p‖ = ‖∇ f (x)‖,

which mean that

(1.12) ∇ f (x) · p ≥ −‖∇ f (x)‖,

and the equality holds when p = −
∇ f (x)
‖∇ f (x)‖ .

Corollary 1. Locally, f (x) decreases most rapidly along the negative gradient direc-
tion.

Here is a simple diagram for this property.

Fig. 1.1. Negative Gradient Direction: xk is current point, pk is the negative gradient of xk, i.e.,
−∇ f (xk)

.

Since at each point, f (x) decreases most rapidly along the negative gradient direc-
tion, it is then natural to choose the search direction in (1.3) in the negative gradient
direction and the resulting algorithm is the so-called gradient descent method.

Algorithm 1 Gradient Descent Method
Given the initial guess x0, learning rate ηt > 0
For t=1,2,· · · ,

(1.13) xt+1 = xt − ηt∇ f (xt),
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1.1. OPTIMIZATION: GRADIENT DESCENT METHOD

In practice, we need a “stopping criterion” that determines when the above gra-
dient descent method to stop. One possibility is

While S (xt; f ) = ‖∇ f (xt)‖ ≤ ε or t ≥ T

for some small tolerance ε > 0 or maximal number of iterations T . In general, a good
stopping criterion is hard to come by and it is subject that has called a lot of research
in optimization for machine learning.

1.1.2 Convex function

Then, let us first give the definition of convex sets.

Definition 2 (Convex set). A set C is convex, if the line segment between any two
points in C lies in C, i.e., if any x1, x2 ∈ C and any α with 0 ≤ α ≤ 1, there holds

(1.14) αx1 + (1 − α)x2 ∈ C.

Based on the definition above, we have the next property of convex sets.

Lemma 2. Let C be a convex set, with x1, . . . , xk ∈ C, and let α1, . . . , αk ∈ R satisfy
αi ≥ 0 and

∑k
i=1 αi = 1, then

(1.15)
k∑

i=1

αixi ∈ C,

Following the definition of convex set, we define convex function as following.

Definition 3 (Convex function). Let C ⊂ Rn be a convex set and f : C → R:

1. f is called convex if for any x1, x2 ∈ C and α ∈ [0, 1]

(1.16) f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2).

2. f is called strictly convex if for any x1 , x2 ∈ C and α ∈ (0, 1):

(1.17) f (αx1 + (1 − α)x2) < α f (x1) + (1 − α) f (x2).

3. A function f is said to be (strictly) concave if − f is (strictly) convex.

With mentioned previously property of convex sets, it is easy to expend the above
definition of convex function. Here we write as one lemma without proof.

Lemma 3. Let C be a convex set, with x1, . . . , xk ∈ C, and let α1, . . . , αk ∈ R satisfy
αi ≥ 0 and

∑k
i=1 αi = 1, then

(1.18) f (
k∑

i=1

αixi) ≤
k∑

i=1

αi f (xi).
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CHAPTER 1. LOGISTIC REGRESSION

We also have these following interesting properties of convex function. You can
prove them as exercises just with the above definitions.

Properties 2 (basic properties of convex function)

1. Linear combination of convex functions with positive coefficients is convex func-
tion.

2. Linear function is both convex and concave.
3. A convex function composited with a linear function is convex.
4. If the function u = g(x) is concave, and the function y = f (u) is convex and

non-increasing, then the composite function f ◦ g is convex.
5. If the function u = g(x) is convex, and the function y = f (u) is convex and

non-decreasing, then the composite function f ◦ g is convex.

Definition 4. The Hessian matrix of f (x)

(1.19) H(x) := ∇2 f (x) =



∂2 f (x)
∂x1

2
∂2 f (x)
∂x1∂x2

· · ·
∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x2∂x1

∂2 f (x)
∂x2

2 · · ·
∂2 f (x)
∂x2∂xn

...
...

...
∂2 f (x)
∂xn∂x1

∂2 f (x)
∂xn∂x2

· · ·
∂2 f (x)
∂xn

2


,

From the perspective of multi-variable calculus, we also have the next important
theorem to describe differentiable convex function.

Theorem 3. If f (x) is twice continuously differentiable on the non-empty and open
convex set C ⊂ Rn, then

• f (x) is convex if and only if its Hessian matrix H(x) = ∇2 f (x) ≥ 0 for every
x ∈ C.

• f (x) is strictly convex if H(x) > 0 for every x ∈ C.

Here, for any matrix A ∈ Rn×n, and

(1.20) A ≥ 0⇔ vT Av ≥ 0, ∀v ∈ Rn,

we call A as a positive semidefinite matrix. Correspondingly, A > 0 is defined with
vT Av > 0 for any v , 0, which is so-called positive definite matrix.

Theorem 4. If f (x) is differentiable on the non-empty and open convex set C ⊂ Rn,
then f (x) is convex if and only if

(1.21) f (x1) − f (x2) ≥ ∇ f (x2)(x1 − x2),∀x1, x2 ∈ C.

f (x) is convex if and only if

(1.22) f (x1) − f (x2) > ∇ f (x2)(x1 − x2),∀x1, x2 ∈ C, x1 , x2.
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1.1. OPTIMIZATION: GRADIENT DESCENT METHOD

Following the theorem above, we can prove the next important theorem for con-
vex function. Before that, we need to clearly define several solution points of opti-
mization problem. One general optimal setting:

(1.23) min
x∈C

f (x).

For the above objective function,

Definition 5. Let x∗ ∈ C, x∗ is a local minima, if exists δ > 0, for any x satisfies
‖x − x∗‖ < δ, f (x∗) ≤ f (x). Especially if adding that x , x∗, f (x∗) < f (x), then x∗ is
one strictly local minima of f .

Theorem 5 (First order requirement). Let f : C ⊂ Rn → R is continuous and
differentiable on open set C, if x∗ is a local minima, then

(1.24) ∇ f (x∗) = 0.

Theorem 6. Suppose that f : C → R is differentiable and convex over set C, any
local minima of f is also its global minima.

1.1.3 Convergence of gradient Descent Method

Based on Theorem 6, to optimize f (x), we hope to find a sequence {xt}
∞
t=1 such that

(1.25) lim
t→∞
‖xt − x∗‖ or lim

t→∞
f (xt) = inf

x
f (x) or lim

t→∞
‖∇ f (xt)‖ = 0,

for some x∗ ∈ arg minx f (x).

Theorem 7. Suppose that f (x) is convex, differentiable, and Lipschitz continuous
with constant L for ∇ f (x), i.e., ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖. Then, for any small
constant step size

(1.26) ηt = η ≤=
2α
L
,

while α ∈ (01, ) then we will have

(1.27) min
1≤t≤T

{‖∇ f (xt)‖} ≤
C
√

T
.
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