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Probability and training algorithms

1.1 Convex functions and convergence of gradient descent

1.1.1 Convex function

Then, let us first give the definition of convex sets.

Definition 1 (Convex set). A set C is convex, if the line segment between any two
points in C lies in C, i.e., if any x,y € C and any a with 0 < a < 1, there holds

(1.1) ax+(1-a)yeC.

Here are two diagrams for this definition about convex and non-convex sets.

Following the definition of convex set, we define convex function as following.
Definition 2 (Convex function). Let C C R” be a convex set and f : C — R:

1. f is called convex if for any x,y € C and « € [0, 1]
(1.2) flax+ (1 =a)y) < af(x) + (1 -a)f().
2. f is called strictly convex if for any x # y € C and a € (0, 1):
(1.3) flax+ (1 = a)y) <af()+ (1 -a)fy).
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3. A function f is said to be (strictly) concave if — f is (strictly) convex.

We also have the next diagram for convex function definition.

Lemma 1. If f(x) is differentiable on R", then f(x) is convex if and only if
(1.4) J@ =z fM+ Vi) (x-y).Yx,yeR"

Based on the lemma, we can first have the next new diagram for convex functions.

Proof. Let z = ax + (1 — @)y,0 < @ < 1,Vx,y € R", we have these next two
Taylor expansion:
(1.5) J) = f(2)+ V(@) (x—2)
' f0) 2 f@) + V@) = 2)-

Then we have
af(x)+ (1 -a)f(y)
2f(2)+ Vi@la(x—2) + (1 —a)(y — 2)]
=f()
=flax+ (1 - a)y).

(1.6)
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Thus we have

1.7 af(x) + 1 -a)f(y) 2z flax + (1 - a)y).

This finishes the proof.
On the other hand (homework): if f(x) is differentiable on R”, then f(x) > f(y)+
Vi) - (x—y),Yx,y € R"if f(x) is convex. [

Definition 3 (A-strongly convex). We say that f(x) is A-strongly convex if
A
(1.8) F) 2 fG) + VFG) - (x=y) + Sl =i, YxyeC,

for some A > 0.

Example 1. Consider f(x) = ||x||>, then we have

(1.9) 2—){ =2x,Vf=2x€eR".
So, we have
) = fO) -VIfO(x-y)
=[x = II* = 2y(x = y)
=[xl = IvlP = 2xy + 2 |Iyll?
(1.10) = [l = 2xy + Iyl

=[x =yl
A
=S lIe—yP. a=2
Thus, f(x) = IIx]I? is 2-strongly convex
Example 2 (Homework). Actually, the loss function of the logistic regression model
(1.11) L(0) = —log P(0),

is convex as a function of 6.
Furthermore, the loss function of the regularized logistic regression model

(1.12) L(0) = —log P(6) + A0], 1 > 0
is A’-strongly convex (A’ is related to 1) as a function of 6.

We also have these following interesting properties of convex function.

Properties 1 (basic properties of convex function) [Homework]

1. If f(x), g(x) are both convex, then af(x) + Bg(x) is also convex, if o, > 0.
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2. Linear function is both convex and concave. Here, f(x) is concave if and only if
—f(x) is convex.

3. If f(x) is a convex convex function on R", then g(y) = f(Ay + b) is a convex
function on R™. Here A € R™" and b € R™.

4. If g(x) is a convex function on R", and the function f(u) is convex function on R
and non-decreasing, then the composite function f o g(x) = f(g(x)) is convex.

Proof. Homework: prove them by definition. 0

1.1.2 On the Convergence of GD
For the next optimization problem

(1.13) min f(x).

xeR"

We assume that f(x) is convex. Then we say that x* is a minimizer if f(x*) =
Min,egs f(X).
Let recall that, for minimizer x* we have

(1.14) Vf(x*) =0.
Then we have the next tw properties of minimizer for convex functions:
1. If f(x) > ¢, for some ¢y € R, then we have
(1.15) arg min f # 0.

2. If f(x) is A-strongly convex, then f(x) has a unique minimizer, namely, there
exists a unique x* € R” such that

(1.16) f(&x) = min f(x).

To investigate the convergence of gradient descent method, let recall the gradient
descent method:

Algorithm 1 FGD
For:t=1,2,---

(1.17) X1 = X — 0V f(x0),

where 7, is the stepsize / learning rate.

Assumption 1.18 We make the following assumptions
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1. f(x) is A-strongly convex for some A > 0. Recall the definition, we have

P
fO) 2 fO) +VfG) - (x=y) + Fllx = vl

then note x* = argmin f(x). Then we have
e Takey = x*, this leads to

A
f) 2 f6) + Slx -yl

o Take x = x*, this leads to

* * A *
02 f(x) = f0) 2 VFO) - (& = y) + S v =P
which means that
% A #1(2
(1.19) Vf(x)-(x—x)zzllx—xll .
2. Vfis Lipschitz for some L > 0, i.e.,

(1.20) IVf(x) = VDIl < Lilx = yll, Vx, y.

Thus, we have the next theorem about the convergence of gradient descent
method.

Theorem 2. For Algorithm 1, if f(x) is A-strongly convex and Vf is Lipschitz for
some L > 0, then

(1.21) llx, — x*|I* < a@'llxo — x*|I?
if0<77rS770=#anda=1—f—;< L.

Proof. If we minus any x € R”, we can only get:
(1.22) X1 — X = X — 0,V f(x) — x.
If we take L2 norm for both side, we get:
(123) xeer = 2 = 1lxe = 7,V f ) = xP.

So we have the following inequality and take x = x*:
(1.24)
1 = 1P = lxe = 7,V f () = x|

= |lx, = X = 27,V f ()T (= ) + IV f(x) = VAP
< |lx; = x| = g, Allx; = x*|1* + 2 L2||x, — x*||* (2 — strongly convex and Lipschitz)

< (1 =nd+nL7)lx - x|,
So, if ; < ﬁ, thena = (1 -npA+n?L?) < 1- % < 1, which finishes the proof.
O

Some issues on GD:
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e Vf(x,)is very expensive to compete.
e GD does not yield generalization accuracy.

The stochastic gradient descent (SGD) method which we will discuss in the next
section will focus on these two issues.
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