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Probability and training algorithms

1.1 Convex functions and convergence of gradient descent

1.1.1 Convex function

Then, let us first give the definition of convex sets.

Definition 1 (Convex set). A set C is convex, if the line segment between any two
points in C lies in C, i.e., if any x, y ∈ C and any α with 0 ≤ α ≤ 1, there holds

(1.1) αx + (1 − α)y ∈ C.

Here are two diagrams for this definition about convex and non-convex sets.

Following the definition of convex set, we define convex function as following.

Definition 2 (Convex function). Let C ⊂ Rn be a convex set and f : C → R:

1. f is called convex if for any x, y ∈ C and α ∈ [0, 1]

(1.2) f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y).

2. f is called strictly convex if for any x , y ∈ C and α ∈ (0, 1):

(1.3) f (αx + (1 − α)y) < α f (x) + (1 − α) f (y).
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3. A function f is said to be (strictly) concave if − f is (strictly) convex.

We also have the next diagram for convex function definition.

Lemma 1. If f (x) is differentiable on Rn, then f (x) is convex if and only if

(1.4) f (x) ≥ f (y) + ∇ f (y) · (x − y),∀x, y ∈ Rn.

Based on the lemma, we can first have the next new diagram for convex functions.

Proof. Let z = αx + (1 − α)y, 0 ≤ α ≤ 1,∀x, y ∈ Rn, we have these next two
Taylor expansion:

(1.5)
f (x) ≥ f (z) + ∇ f (z)(x − z)
f (y) ≥ f (z) + ∇ f (z)(y − z).

Then we have

(1.6)

α f (x) + (1 − α) f (y)
≥ f (z) + ∇ f (z)[α(x − z) + (1 − α)(y − z)]
= f (z)
= f (αx + (1 − α)y).
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Thus we have

(1.7) α f (x) + (1 − α) f (y) ≥ f (αx + (1 − α)y).

This finishes the proof.
On the other hand (homework): if f (x) is differentiable on Rn, then f (x) ≥ f (y)+

∇ f (y) · (x − y),∀x, y ∈ Rn if f (x) is convex.

Definition 3 (λ-strongly convex). We say that f (x) is λ-strongly convex if

(1.8) f (x) ≥ f (y) + ∇ f (y) · (x − y) +
λ

2
‖x − y‖2, ∀x, y ∈ C,

for some λ > 0.

Example 1. Consider f (x) = ‖x‖2, then we have

(1.9)
∂ f
∂xi

= 2xi,∇ f = 2x ∈ Rn.

So, we have

(1.10)

f (x) − f (y) − ∇ f (y)(x − y)

= ‖x‖2 − ‖y‖2 − 2y(x − y)

= ‖x‖2 − ‖y‖2 − 2xy + 2 ‖y‖2

= ‖x‖2 − 2xy + ‖y‖2

= ‖x − y‖2

=
λ

2
‖x − y‖2 , λ = 2.

Thus, f (x) = ‖x‖2 is 2-strongly convex

Example 2 (Homework). Actually, the loss function of the logistic regression model

(1.11) L(θ) = − log P(θ),

is convex as a function of θ.
Furthermore, the loss function of the regularized logistic regression model

(1.12) Lλ(θ) = − log P(θ) + λ‖θ‖2F , λ > 0

is λ′-strongly convex (λ′ is related to λ) as a function of θ.

We also have these following interesting properties of convex function.

Properties 1 (basic properties of convex function) [Homework]

1. If f (x), g(x) are both convex, then α f (x) + βg(x) is also convex, if α, β ≥ 0.
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2. Linear function is both convex and concave. Here, f (x) is concave if and only if
− f (x) is convex.

3. If f (x) is a convex convex function on Rn, then g(y) = f (Ay + b) is a convex
function on Rm. Here A ∈ Rm×n and b ∈ Rm.

4. If g(x) is a convex function on Rn, and the function f (u) is convex function on R
and non-decreasing, then the composite function f ◦ g(x) = f (g(x)) is convex.

Proof. Homework: prove them by definition.

1.1.2 On the Convergence of GD

For the next optimization problem

(1.13) min
x∈Rn

f (x).

We assume that f (x) is convex. Then we say that x∗ is a minimizer if f (x∗) =

minx∈Rn f (x).
Let recall that, for minimizer x∗ we have

(1.14) ∇ f (x∗) = 0.

Then we have the next tw properties of minimizer for convex functions:

1. If f (x) ≥ c0, for some c0 ∈ R, then we have

(1.15) arg min f , ∅.

2. If f (x) is λ-strongly convex, then f (x) has a unique minimizer, namely, there
exists a unique x∗ ∈ Rn such that

(1.16) f (x∗) = min
x∈Rn

f (x).

To investigate the convergence of gradient descent method, let recall the gradient
descent method:

Algorithm 1 FGD
For: t = 1, 2, · · ·

(1.17) xt+1 = xt − ηt∇ f (xt),

where ηt is the stepsize / learning rate.

Assumption 1.18 We make the following assumptions
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1. f (x) is λ-strongly convex for some λ > 0. Recall the definition, we have

f (x) ≥ f (y) + ∇ f (y) · (x − y) +
λ

2
‖x − y‖2,

then note x∗ = arg min f (x). Then we have
• Take y = x∗, this leads to

f (x) ≥ f (x∗) +
λ

2
‖x − y‖2.

• Take x = x∗, this leads to

0 ≥ f (x∗) − f (y) ≥ ∇ f (y) · (x∗ − y) +
λ

2
‖x∗ − y‖2,

which means that

(1.19) ∇ f (x) · (x − x∗) ≥
λ

2
‖x − x∗‖2.

2. ∇ f is Lipschitz for some L > 0, i.e.,

(1.20) ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖,∀x, y.

Thus, we have the next theorem about the convergence of gradient descent
method.

Theorem 2. For Algorithm 1, if f (x) is λ-strongly convex and ∇ f is Lipschitz for
some L > 0, then

(1.21) ‖xt − x∗‖2 ≤ αt‖x0 − x∗‖2

if 0 < ηt ≤ η0 = λ
2L2 and α = 1 − λ2

4L2 < 1.

Proof. If we minus any x ∈ Rn, we can only get:

(1.22) xt+1 − x = xt − ηt∇ f (xt) − x.

If we take L2 norm for both side, we get:

(1.23) ‖xt+1 − x‖2 = ‖xt − ηt∇ f (xt) − x‖2.

So we have the following inequality and take x = x∗:
(1.24)
‖xt+1 − x∗‖2 = ‖xt − ηt∇ f (xt) − x∗‖2

= ‖xt − x∗‖2 − 2ηt∇ f (xt)>(xt − x∗) + η2
t ‖∇ f (xt) − ∇ f (x∗)‖2

≤ ‖xt − x∗‖2 − ηtλ‖xt − x∗‖2 + η2
t L2‖xt − x∗‖2 (λ − strongly convex and Lipschitz)

≤ (1 − ηtλ + η2
t L2)‖xt − x∗‖.

So, if ηt ≤
λ

2L2 , then α = (1 − ηtλ + η2
t L2) ≤ 1 − λ2

4L2 < 1, which finishes the proof.

Some issues on GD:
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• ∇ f (xt) is very expensive to compete.
• GD does not yield generalization accuracy.

The stochastic gradient descent (SGD) method which we will discuss in the next
section will focus on these two issues.
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