Contents

1	Probability and training algorithms				
	1.1	Convex functions and convergence of gradient descent			
		1.1.1	Convex function	3	
		1.1.2	On the Convergence of GD	6	

Probability and training algorithms

1.1 Convex functions and convergence of gradient descent

1.1.1 Convex function

Then, let us first give the definition of convex sets.

Definition 1 (Convex set). A set C is convex, if the line segment between any two points in C lies in C, i.e., if any $x, y \in C$ and any α with $0 \le \alpha \le 1$, there holds

$$(1.1) \alpha x + (1 - \alpha)y \in C.$$

Here are two diagrams for this definition about convex and non-convex sets.

Following the definition of convex set, we define convex function as following.

Definition 2 (Convex function). *Let* $C \subset \mathbb{R}^n$ *be a convex set and* $f : C \to \mathbb{R}$ *:*

1. f is called **convex** if for any $x, y \in C$ and $\alpha \in [0, 1]$

$$(1.2) f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

2. *f* is called **strictly convex** if for any $x \neq y \in C$ and $\alpha \in (0, 1)$:

$$(1.3) f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

3. A function f is said to be (strictly) **concave** if -f is (strictly) convex.

We also have the next diagram for convex function definition.

Lemma 1. If f(x) is differentiable on \mathbb{R}^n , then f(x) is convex if and only if

$$(1.4) f(x) \ge f(y) + \nabla f(y) \cdot (x - y), \forall x, y \in \mathbb{R}^n.$$

Based on the lemma, we can first have the next new diagram for convex functions.

Proof. Let $z = \alpha x + (1 - \alpha)y, 0 \le \alpha \le 1, \forall x, y \in \mathbb{R}^n$, we have these next two Taylor expansion:

(1.5)
$$f(x) \ge f(z) + \nabla f(z)(x - z)$$
$$f(y) \ge f(z) + \nabla f(z)(y - z).$$

Then we have

(1.6)
$$\alpha f(x) + (1 - \alpha)f(y)$$

$$\geq f(z) + \nabla f(z)[\alpha(x - z) + (1 - \alpha)(y - z)]$$

$$= f(z)$$

$$= f(\alpha x + (1 - \alpha)y).$$

Thus we have

(1.7)
$$\alpha f(x) + (1 - \alpha)f(y) \ge f(\alpha x + (1 - \alpha)y).$$

This finishes the proof.

On the other hand (**homework**): if f(x) is differentiable on \mathbb{R}^n , then $f(x) \ge f(y) + \nabla f(y) \cdot (x - y)$, $\forall x, y \in \mathbb{R}^n$ if f(x) is convex. \Box

Definition 3 (λ -strongly convex). We say that f(x) is λ -strongly convex if

$$(1.8) f(x) \ge f(y) + \nabla f(y) \cdot (x - y) + \frac{\lambda}{2} ||x - y||^2, \quad \forall x, y \in C,$$

for some $\lambda > 0$.

Example 1. Consider $f(x) = ||x||^2$, then we have

(1.9)
$$\frac{\partial f}{\partial x_i} = 2x_i, \nabla f = 2x \in \mathbb{R}^n.$$

So, we have

$$f(x) - f(y) - \nabla f(y)(x - y)$$

$$= ||x||^2 - ||y||^2 - 2y(x - y)$$

$$= ||x||^2 - ||y||^2 - 2xy + 2||y||^2$$

$$= ||x||^2 - 2xy + ||y||^2$$

$$= ||x - y||^2$$

$$= \frac{\lambda}{2} ||x - y||^2, \quad \lambda = 2.$$

Thus, $f(x) = ||x||^2$ is 2-strongly convex

Example 2 (Homework). Actually, the loss function of the logistic regression model

$$(1.11) L(\theta) = -\log P(\theta),$$

is convex as a function of θ .

Furthermore, the loss function of the regularized logistic regression model

$$(1.12) L_{\lambda}(\theta) = -\log P(\theta) + \lambda ||\theta||_F^2, \lambda > 0$$

is λ' -strongly convex (λ' is related to λ) as a function of θ .

We also have these following interesting properties of convex function.

Properties 1 (basic properties of convex function) [Homework]

1. If f(x), g(x) are both convex, then $\alpha f(x) + \beta g(x)$ is also convex, if $\alpha, \beta \ge 0$.

- 2. Linear function is both convex and concave. Here, f(x) is concave if and only if -f(x) is convex.
- 3. If f(x) is a convex convex function on \mathbb{R}^n , then g(y) = f(Ay + b) is a convex function on \mathbb{R}^m . Here $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$.
- 4. If g(x) is a convex function on \mathbb{R}^n , and the function f(u) is convex function on \mathbb{R} and non-decreasing, then the composite function $f \circ g(x) = f(g(x))$ is convex.

Proof. **Homework**: prove them by definition. \Box

1.1.2 On the Convergence of GD

For the next optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}).$$

We assume that f(x) is convex. Then we say that x^* is a minimizer if $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$.

Let recall that, for minimizer x^* we have

$$(1.14) \qquad \nabla f(x^*) = 0.$$

Then we have the next tw properties of minimizer for convex functions:

1. If $f(x) \ge c_0$, for some $c_0 \in \mathbb{R}$, then we have

$$(1.15) arg min $f \neq \emptyset.$$$

2. If f(x) is λ -strongly convex, then f(x) has a unique minimizer, namely, there exists a unique $x^* \in \mathbb{R}^n$ such that

$$(1.16) f(x^*) = \min_{x \in \mathbb{R}^n} f(x).$$

To investigate the convergence of gradient descent method, let recall the gradient descent method:

Algorithm 1 FGD

For: $t = 1, 2, \cdots$

$$(1.17) x_{t+1} = x_t - \eta_t \nabla f(x_t),$$

where η_t is the stepsize / learning rate.

Assumption 1.18 We make the following assumptions

1. f(x) is λ -strongly convex for some $\lambda > 0$. Recall the definition, we have

$$f(x) \ge f(y) + \nabla f(y) \cdot (x - y) + \frac{\lambda}{2} ||x - y||^2,$$

then note $x^* = \arg\min f(x)$. Then we have

• Take $y = x^*$, this leads to

$$f(x) \ge f(x^*) + \frac{\lambda}{2} ||x - y||^2.$$

• Take $x = x^*$, this leads to

$$0 \ge f(x^*) - f(y) \ge \nabla f(y) \cdot (x^* - y) + \frac{\lambda}{2} ||x^* - y||^2,$$

which means that

(1.19)
$$\nabla f(x) \cdot (x - x^*) \ge \frac{\lambda}{2} ||x - x^*||^2.$$

2. ∇f is Lipschitz for some L > 0, i.e.,

Thus, we have the next theorem about the convergence of gradient descent method.

Theorem 2. For Algorithm 1, if f(x) is λ -strongly convex and ∇f is Lipschitz for some L > 0, then

$$||x_t - x^*||^2 \le \alpha^t ||x_0 - x^*||^2$$

if
$$0 < \eta_t \le \eta_0 = \frac{\lambda}{2L^2}$$
 and $\alpha = 1 - \frac{\lambda^2}{4L^2} < 1$.

Proof. If we minus any $x \in \mathbb{R}^n$, we can only get:

$$(1.22) x_{t+1} - x = x_t - \eta_t \nabla f(x_t) - x.$$

If we take L^2 norm for both side, we get:

$$||x_{t+1} - x||^2 = ||x_t - \eta_t \nabla f(x_t) - x||^2.$$

So we have the following inequality and take $x = x^*$:

(1.24)

$$||x_{t+1} - x^*||^2 = ||x_t - \eta_t \nabla f(x_t) - x^*||^2$$

$$= ||x_t - x^*||^2 - 2\eta_t \nabla f(x_t)^\top (x_t - x^*) + \eta_t^2 ||\nabla f(x_t) - \nabla f(x^*)||^2$$

$$\leq ||x_t - x^*||^2 - \eta_t \lambda ||x_t - x^*||^2 + \eta_t^2 L^2 ||x_t - x^*||^2 \quad (\lambda - \text{strongly convex and Lipschitz})$$

$$\leq (1 - \eta_t \lambda + \eta_t^2 L^2) ||x_t - x^*||.$$

So, if $\eta_t \le \frac{\lambda}{2L^2}$, then $\alpha = (1 - \eta_t \lambda + \eta_t^2 L^2) \le 1 - \frac{\lambda^2}{4L^2} < 1$, which finishes the proof.

Some issues on GD:

- $\nabla f(x_t)$ is very expensive to compete.
- GD does not yield generalization accuracy.

The stochastic gradient descent (SGD) method which we will discuss in the next section will focus on these two issues.