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Probability and training algorithms

1.1 Stochastic gradient descent method and convergence theory

The next optimization problem is the most common case in machine learning.

Problem 1.

(1.1) min
x∈Rn

f (x),

where

(1.2) f (x) =
1
N

N∑
i=1

fi(x).

One version of stochastic gradient descent (SGD) algorithm is:

Algorithm 1 SGD
Input: initialization x0, learning rate ηt.
For: t = 0,1,2,. . .
Randomly pick it ∈ {1, 2, · · · ,N} independently with probability 1

N

(1.3) xt+1 = xt − ηt∇ fit (xt).

1.1.1 Convergence of SGD

Theorem 1. Assume that each fi(x) is λ-strongly convex and ‖∇ fi(x)‖ ≤ M for some
M > 0. If we take ηt = a

λ(t+1) with sufficiently large a such that

(1.4) ‖x0 − x∗‖2 ≤
a2M2

(a − 1)λ2
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then

(1.5) Ee2
t ≤

a2M2

(a − 1)λ2(t + 1)
, t ≥ 1,

where et = ‖xt − x∗‖.

Proof. The L2 error of SGD can be written as

E‖xt+1 − x∗‖2 ≤ E‖xt − ηt∇ fit (xt) − x∗‖2

≤ E‖xt − x∗‖2 − 2ηtE(∇ fit (xt) · (xt − x∗)) + η2
t E‖∇ fit (xt)‖2

≤ E‖xt − x∗‖2 − 2ηtE(∇ f (xt) · (xt − x∗)) + η2
t M2

≤ E‖xt − x∗‖2 − ηtλE‖xt − x∗‖2 + η2
t M2

= (1 − ηtλ)E‖xt − x∗‖2 + η2
t M2

(1.6)

The third line comes from the fact that

(1.7)

E(∇ fit (xt) · (xt − x∗)) = Ei1i2···it (∇ fit (xt) · (xt − x∗))

= Ei1i2···it−1

1
N

N∑
i=1

∇ fi(xt) · (xt − x∗)

= Ei1i2···it−1∇ f (xt) · (xt − x∗)
= E∇ f (xt) · (xt − x∗),

and

(1.8) E‖∇ fit (xt)‖2 ≤ EM2 = M2.

Note when t = 0, we have

(1.9) Ee2
0 = ‖x0 − x∗‖2 ≤

a2M2

(a − 1)λ
,

based on the assumption.
In the case of SDG, by the inductive hypothesis,

Ee2
t+1 ≤ (1 − ηtλ)Ee2

t + η2
t M2

≤ (1 −
a

t + 1
)

a2M2

(a − 1)λ2(t + 1)
+

a2M2

λ2(t + 1)2

≤
a2M2

(a − 1)λ2

1
(t + 1)2 (t + 1 − a + a − 1)

=
a2M2

(a − 1)λ2

t
(t + 1)2

≤
a2M2

(a − 1)λ2(t + 2)
.

(
t

(t + 1)2 ≤
1

t + 2

)
(1.10)
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1.1.2 SGD with mini-batch

Firstly, we will introduce a natural extended version of the SGD discussed above
with introducing mini-bath.

Algorithm 2 SGD with mini-batch
Input: initialization x0, learning rate ηt.
For: t = 0,1,2,. . .

Randomly pick Bt ⊂ {1, 2, · · · ,N} independently
with probability 1(

N
m

) and #Bt = m.

(1.11) xt+1 = xt − ηtgt(xt).

where
gt(xt) =

1
m

∑
i∈Bt

∇ fi(xt)

Now we introduce the SGD algorithm with mini-batch without replacement
which is the most commonly used version of SGD in machine learning.

Algorithm 3 Shuffle SGD with mini-batch
Input: learning rate ηk, mini-batch size m, parameter initialization x0 and denote
M = dN

m e.
For Epoch k = 1, 2, . . .

Randomly pick Bi ⊂ {1, 2, · · · ,N} without replacement
with #Bi = m for i = 1, 2, · · · , t.

For mini-batch t = 1 : M
Compute the gradient on Bt:
Update x:

x← x − ηkgt(x),

where
gt(x) =

1
m

∑
i∈Bt

∇ fi(x)

EndFor
EndFor

To “ randomly pick Bi ⊂ {1, 2, · · · ,N} without replacement with #Bi = m for
i = 1, 2, · · · , t”, we usually just randomly shuffle the index set first and then consec-
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utively pick every m elements in the shuffled index set. That is the reason why we
would like to call the algorithm as shuffled SGD while this is the mostly used version
of SGD in machine learning.

Remark 1. Let recall a general machine learning loss function

(1.12) L(θ) =
1
N

N∑
i=1

`(h(Xi; θ),Yi),

where {(Xi,Yi)}Ni=1 correspond to these data pairs. For example, `(·, ·) takes cross-
entropy and h(x; θ) = p(x; θ) as we discussed in Logistic regression section.

Thus, we have the following corresponding relation

f (x)! L(θ)
fi(x)! `(h(Xi; θ),Yi).
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