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Probability and training algorithms

1.1 Stochastic gradient descent method and convergence theory

The next optimization problem is the most common case in machine learning.

Problem 1.

(1.1) g;li%qf(x),
where

1 N
(12) fo) =5 Zl fi(2).

One version of stochastic gradient descent (SGD) algorithm is:

Algorithm 1 SGD

Input: initialization xp, learning rate ;.

For:t=0,1,2,...

Randomly pick i, € {1,2, - -, N} independently with probability %

(1.3) X4l = X — Uzvfi, ().

1.1.1 Convergence of SGD

Theorem 1. Assume that each f;(x) is A-strongly convex and ||V f;(x)|| < M for some

M > 0. If we take i, = ﬁ with sufficiently large a such that

2a02

a
1.4 B [
(L4 llxo — x7|I° < @D
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then

242
(1.5) Ee? < %
where e; = ||x; — x*||.

Proof. The L? error of SGD can be written as
Ellxee1 — x*I1* < Ellx, — .V £, (x0) = x°
< Ellx, — x'1P = 20 BV i, (x) - (0 = X)) + q7BIV £, (x)I
(1.6) <Ellx, - x| = 2 B(VF(x) - (5 = x*) + 7, M?
<Emfnmﬂ—nﬂmm—xm’+mM2
= (1 = g DE|x, — x*|> + m; M

The third line comes from the fact that

E(Vf,(x) - (xr = x)) = Eijjj-. i,(Vfi,(xr) “(x = X))

(1.7) :MMNZWWHMX)

= Eill‘z'“ilflvf(xl) : (xf - X )
=EVf(x) - (x — x%),

and
(1.8) E(Vf, (x)l* < EM? = M?

Note when ¢ = 0, we have

2M2
1.9 Ee? = |lxo — x°|P < ———,
1.9) €y = llxo = x7|I” < @i

based on the assumption.
In the case of SDG, by the inductive hypothesis,

Ee?,, < (1 —p,A)Be? + > M?

a acM? aAM?
<(1-—) +
+1@-D2+1)  2+12
a?M? 1
(1.10) (a — DA (t+1)2
a’M? t
T @-DERG+ 12

t+1

—(t+1—-a+a-1)

2\ ( t 1 )
< ) <
(a— DA%t +2) t+1)72 " t+2
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1.1.2 SGD with mini-batch

Firstly, we will introduce a natural extended version of the SGD discussed above
with introducing mini-bath.

Algorithm 2 SGD with mini-batch
Input: initialization xy, learning rate 7,.

For:t=0,1,2,...
Randomly pick B; c {1,2,---, N} independently
with probability @ and #B, = m.
(1.11) Xee1 = X — 1184 (%y).
where

1
&i(x;) = E Z Vfi(x:)

i€B,

Now we introduce the SGD algorithm with mini-batch without replacement
which is the most commonly used version of SGD in machine learning.

Algorithm 3 Shuffle SGD with mini-batch

Input: learning rate 7, mini-batch size m, parameter initialization xo and denote
M =147

For Epochk =1,2,...

Randomly pick B; C {1,2,---, N} without replacement
with#B; =mfori=1,2,--- ,t.

For mini-batcht=1: M
Compute the gradient on B;:

Update x:
where .
20 = — ) Vfi(x)
m i€B;
EndFor
EndFor

To “ randomly pick B; C {1,2,---, N} without replacement with #B; = m for
i=1,2,---,¢, we usually just randomly shuffle the index set first and then consec-
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utively pick every m elements in the shuffled index set. That is the reason why we
would like to call the algorithm as shuffled SGD while this is the mostly used version
of SGD in machine learning.

Remark 1. Let recall a general machine learning loss function
&
1.12 L) == ) {(X;;0),Y)),
(1.12) )=~ Zl (h(X;:0). Y;)

where {(X;, Y,-)}f\; , correspond to these data pairs. For example, £(-,-) takes cross-
entropy and h(x; 8) = p(x; ) as we discussed in Logistic regression section.
Thus, we have the following corresponding relation

F(x) e L(6)
fi(x) e £(h(X;3 6), Y)).
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