HW Week 5: Normalization, ResNet and Multigrid

(due date: 06/19/2020)

MATH 497 Summer 2020

Problem 1 Assume that we have the following data

$$X = \{x_1, x_2, \cdots, x_N\},\$$

where

$$x_i = \begin{pmatrix} [x_i]_1 \\ [x_i]_2 \\ \vdots \\ [x_i]_d \end{pmatrix} \in \mathbb{R}^d.$$

Then consider the following normalization operation via each component

$$[\tilde{x}_i]_j = \frac{[x_i]_j - [\mu_X]_j}{\sqrt{[\sigma_X]_j}},$$

where

$$[\mu_X]_j = \frac{1}{N} \sum_{i=1}^N [x_i]_j, \quad [\sigma_X]_j = \frac{1}{N} \sum_{i=1}^N ([x_i]_j - [\mu_X]_j)^2.$$

1. (10%) Prove that

$$[\mu_{\tilde{X}}]_j = 0$$
 namely $\frac{1}{N} \sum_{i=1}^N [\tilde{x}_i]_j = 0$,

for any $j = 1, 2, \dots, d$.

2. (10%) Prove that

$$[\sigma_{\tilde{X}}]_j = 1$$
 namely $\frac{1}{N} \sum_{i=1}^N \left([\tilde{x}_i]_j - \frac{1}{N} \sum_{i=1}^N [\tilde{x}_i]_j \right)^2 = 1.$

for any $j = 1, 2, \dots, d$.

Problem 2 Define

$$f(x,W) = h(W*x),$$

where

$$W \in \mathbb{R}^{3 \times 3}$$
 and $x \in \mathbb{R}^{4 \times 4}$,

the convolution is done for one channel with stride one and zero padding as discussed in class and

$$h: \mathbb{R}^{4\times 4} \mapsto \mathbb{R},$$

defined by

$$h(Y) = \sum_{1 \le i, j \le 4} e^{Y_{ij}},$$

for $Y \in \mathbb{R}^{4 \times 4}$.

Consider the following kernel

$$K = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

and the following 4×4 image (tensor)

(1)
$$g = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{pmatrix}.$$

1. (10%) Calculate the derivative of h at K * g

$$\left. \frac{\partial h(Y)}{\partial Y} \right|_{Y=K*g} \in \mathbb{R}^{4\times 4}$$

2. (10%) Calculate $\frac{\partial f}{\partial x}\Big|_{W=K,x=g}$ and $\frac{\partial f}{\partial W}\Big|_{W=K,x=g}$.

Hint: Use chain rule.

Problem 3 Consider the following Parametric Rectified Linear Unit (PReLU) function

$$PReLU(t) = \begin{cases} t, & \text{if } t \ge 0\\ at, & \text{if } t < 0, \end{cases}$$

for some $a \in \mathbb{R}$. Let assume that X is an random variable on \mathbb{R} with symmetric probability density function p(x), i.e.

$$p(x) = p(-x), \quad \forall x \in \mathbb{R}.$$

1. (**10%**) Prove that

$$\mathbb{E}[X] = 0.$$

Hint: Use the definition of expectation and the symmetric property of p(x).

2. (10%) Further prove that

$$\mathbb{E}[(\operatorname{PReLU}(X))^2] = \frac{1+a^2}{2}\mathbb{V}[X].$$

Hint: Follow the proof of ReLU case in the notes.

Problem 4 Consider the convolution for one channel with stride one and zero padding. Given a kernel A = [-1, 2, -1], we recall that λ is an eigenvalue of A and $\xi \in \mathbb{R}^n \setminus \{0\}$ is a corresponding eigenvector if

$$A * \xi = \lambda \xi$$
.

1. (15%) Verify that all the *n* eigenvalues, λ_k , and the corresponding eigenvectors, $\xi^k = (\xi_i^k)$, of A* can be obtained, for $1 \le k \le n$, as follows:

$$\lambda_k = 4\sin^2\frac{k\pi}{2(n+1)}, \quad \xi_j^k = \sin\frac{kj\pi}{n+1} \ (1 \le j \le n).$$

2. (5%) Prove that the eigenvectors $\xi^k = (\xi_j^k)$, $1 \le k \le n$ are orthogonal, namely

$$(\xi^k, \xi^l) = \sum_{i=1}^n \xi_j^k \xi_j^l = 0 \text{ if } k \neq l.$$

Problem 5 Consider the convolution for one channel with stride one and zero padding $A*: R^{n \times n} \mapsto R^{n \times n}$

$$(2) A * u = f,$$

where

$$A = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Consider following two iterative methods for equation (2).

Given u^0 ,

(3)
$$for \quad \ell = 1, 2, \dots, 2m$$

$$u^{\ell} = u^{\ell-1} + S_0 * (f - A * u^{\ell-1})$$

with $S_0 = \frac{1}{8}$.

And

Given $\tilde{u}^0 = u^0$,

(4) for
$$\ell = 1, 2, \dots, m$$

$$\tilde{u}^{\ell} = \tilde{u}^{\ell-1} + S_1 * (f - A * \tilde{u}^{\ell-1})$$

with

(5)
$$S_1 = \frac{1}{64} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 12 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 1. **(15%)** Prove that when $m = 1, u^2 = \tilde{u}^1$.
- 2. (5%) Prove that for any $m, u^{2m} = \tilde{u}^m$.