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Preconditioning and Decoupling Methods for Multicomponent
Flows in Porous Media
SRR
P ERFRITERER R

We examine linear algebraic solvers for a general purpose compositional
simulator. In particular, the decoupling stage of the constraint pressure residual
preconditioner for linear systems arising from the fully implicit scheme is
evaluated. An asymptotic analysis of the convergence behavior is given when time
stepsize approaches zero. Based on this analysis, we propose an analytical
decoupling technique, from which the pressure equation is directly related to an
elliptic equation and can be solved efficiently. We show that this method ensures
good convergence behavior of the algebraic solvers in a two—stage preconditioner.
We also propose a semi—analytical decoupling strategy that combines the analytical
method and alternate block factorization method. Numerical experiments demonstrate
the superior performance of the analytical and semi—analytical decoupling methods

compared to existing methods.



Adaptive BDDC algorithms for the system arising from plane wave
discretization of Helmholtz equation
fFid
HEXE

Balancing domain decomposition by constraints (BDDC) algorithms with adaptive
primal constraints are developed in a concise variational framework for the weighted
plane wave least—squares (PWLS) discretization of Helmholtz equations with high and
various wave numbers. The unknowns to be solved in this preconditioned system are
defined on elements rather than vertices or edges, which are different from the
well-known discretizations such as the classical finite element method. Through
choosing suitable ~ interface” and appropriate primal constraints with complex
coefficients and 1introducing some local techniques, we developed a two—level
adaptive BDDC algorithm for the PWLS discretization, and the condition number of the
preconditioned system is proved to be bounded above by a user—defined tolerance and
a constant which is only dependent on the maximum number of interfaces per subdomain.
A multilevel algorithm is also attempted to resolve the bottleneck in large scale
coarse problem. Numerical results are carried out to confirm the theoretical results

and illustrate the efficiency of the proposed algorithms.

Fast solvers for models of fluid flow, linear elasticity and
poroelasticity
Mingchao Cai

Morgan State University

Fluid flow model, linear elasticity model, and poroelasticity model have wide
applications in geosciences and biomechanics. For example, blood-vessel wall
interactions are modeled by using both fluid flow model and elasticity model; brain
edema and cancellous bones are usually modeled by using poroelastic models. In this
presentation, I will discuss the Cahouet—-Chabard preconditioner using exact and
inexact Multigrid solvers for incompressible fluid flow model under the MAC finite
difference discretization, the two—level overlapping Schwarz methods for linear
elasticity model under a stable Finite Element discretization, and some solvers for
poroelasticity model under the MAC discretization and a stabilized Finite Element

discretization.
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Fast Auxiliary Space Preconditioners for Linear Elasticity in

Mixed Form

"EE

m N K
A block diagonal preconditioner with the minimal residual method and an
approximate block factorization preconditioner with the generalized minimal
residual method are developed for Hu—-Zhang mixed finite element methods for linear
elasticity. They are based on a new stability result for the saddle point system
in mesh—dependent norms. The mesh—dependent norm for the stress corresponds to the
mass matrix which is easy to invert while for the displacement it is spectral
equivalent to the Schur complement. A fast auxiliary space preconditioner based on
the $171$ conforming linear element of the linear elasticity problem is then designed
for solving the Schur complement. For both diagonal and triangular preconditioners,
it is proved that the conditioning numbers of the preconditioned systems are bounded
above by a constant independent of both the crucial Lam\’ {e} constant and the
mesh—size. Numerical examples are presented to support theoretical results. As by
products, a new stabilized low order mixed finite element method is proposed and

analyzed and superconvergence results for the Hu-Zhang element are obtained



Sparse solutions of underdetermined |inear equations
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In this talk, we consider sparse solutions of underdetermined linear equations
with structures. The structure includes sparsity, block structure or the context
when some prior information on the support of the signals is available. Moreover,

we consider the optimality or sharpness of these suffcient conditions

On the high—efficiency algorithm for fourth—order eigenvalue
problems
3K AR
hEREZERT T B AR
On the high—efficiency algorithm for fourth-order eigenvalue problems, the talk
is two—folded, which includes an optimal multilevel algorithm for the biharmonic
eigenvalue problem and an adaptive algorithm associatedly. The main ingredient of
the method is an order—reduced formulation of the eigenvalue problem, which admits

flexible discretizations. Theoretical analysis and numerical experiments will be

presented.

Parallel multilevel correction method for eigenvalue problems

4

E
|- | N

A parallel multilevel correction method is proposed for eigenvalue problems.
The main idea is to transform the solution of the eigenvalue problem into a series
of solutions of the corresponding linear boundary value problems on the sequence
of finite element spaces and eigenvalue problems on a very low dimensional space
The computational efficiency can be improved since we do not need to solve the
eigenvalue problems in the fine space directly. Besides, for different eigenvalues,
the corresponding boundary value problem and low dimensional eigenvalue problem can
be solved in the parallel way since they are independent for each other and no data
exchanging. This property means that we do not need to do the orthogonalization in

the high dimensional spaces
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The preconditioning methods for self-consistent iteration of

Kohn—Sham density functional theory
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Kohn—Sham density functional theory has been widely used in the first-principles
calculations of materials. It is a usual practice to calculate the occupied orbitals
for semiconducting, insulating or isolated systems. It differs significantly in
metallic systems and partial occupancies have to be included at the same time. In
the language of optimization, this is an ill-conditioning problem with partial
occupancies treated as additional variational degrees of freedom. We will find the
origin of the conditioning problem related to metallic systems and discuss specific
strategies for it.

An alternative approach is to solve the fixed—point problem generalized from
the Kohn—Sham equation by the self-consistent field (SCF) iteration. We develop a
modified Kerker preconditioning scheme that captures the long-range screening
behavior of inhomogeneous systems and thus improves the SCF convergence. For
situations without a priori knowledge of the system, we design the a posteriori
indicator to monitor if the preconditioner has suppressed charge sloshing during
the iterations. Based on the a posteriori indicator, we demonstrate two schemes of
the self-adaptive configuration for the SCF iteration. This is a joint work with
Yuzhi Zhou, Han Wang, Yu Liu and Haifeng Song
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On Designing the Interpolation Operator
in Algebraic Multigrid Methods
®ER
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Various algebraic multigrid algorithms have been developed for solving problems
in scientific and engineering computation over the past decades. They have been shown
to be well-suited for solving discretized partial differential equations on
unstructured girds in practice. One key ingredient of algebraic multigrid algorithms
is a strategy for constructing an effective prolongation operator. Among many
questions on constructing a prolongation, an important question is how to evaluate
the quality of such an operator. In this talk, we introduce new characterizations
(including sufficient condition, necessary condition, and equivalent condition) of
the so—called ideal interpolation operator, which can provide new insights for
designing practical algebraic multigrid algorithms. Moreover, we give a new

expression for a class of ideal interpolation operators.
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Parallel—-in—-Time with SFVE Multigrid
for Radiation Diffusion Equations
EZ5E
HEXRE
Future computing speed must rely on the increased concurrency provided by more,
instead of faster, processors. An immediate consequence of this is that solution

algorithms, limited to spatial parallelism, for problems with evolutionary behavior

entail long overall computation time, often exceeding computing resources available



to resolve multidimensional PDEs. Thus, algorithms achieving parallelism in time
are of especially high demand. Currently, parareal in time and
multigrid-reduction—in—time (MGRIT) are two active choices. Observe that parareal
can be interpreted as a two—level multigrid (reduction) method, its concurrency is
still limited because of the sequential coarse—grid solve. MGRIT enables us to
approximate simultaneously the evolution over all time points. It has been proven
to be rather effective and analyzed sharply in the two—level setting for integer
order parabolic and hyperbolic problems with the limitation that fine time—grid
propagators are all the same. The main aim of the paper is to propose and analyze
a non—intrusive optimal—-scaling MGRIT solver for radiation diffusion equations in
two and three spatial dimensions, where we shall extend the scope of the MGRIT
algorithm to time—dependent fine time—grid propagators. Some numerical results are

given to illustrate optimal convergence rates in both time and space.

Fast and parallel numerical schemes based on preconditioned
iterative solvers for time—space fractional differential
equations
[ ¥cRR
FRMEKELEFHF SR

In recent years, the time—space fractional differential equations (TSFDEs) play
a vital role in many fields of engineering applications. Due to the nonlocal
operators, the analytical solutions are only available for some special TSFDEs. Thus,
extensive numerical approaches of TSFDEs become more and more popular in the recent
studies. However, it is interesting to note that most numerical schemes still belong
to the time—stepping methods built upon serial operations. The numerical parallel
numerical schemes for TSFDEs should be more meaningful than the conventional
time—stepping schemes in terms of computational effectiveness. In our talk, we will
introduce two classes of “all-at-once” numerical schemes utilized parallel
preconditioned iterative solvers for solving space fractional FDEs and TSFDEs. Our
proposed methods employ the fast Toepliz matrix—vector products via FFTs without
requiring the storage of dense matrices, then both the computational complexity and
the memory cost can be reduced. Theoretical analysis of the numerical scheme and
parallel preconditioning techniques will be investigated. Finally, numerical
experiments are reported to show the effectiveness of our proposed numerical schemes

based on parallel preconditioned iterative solvers



Wavenumber domain optimization method beyond Nyquist frequency

for wave equations
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According to the Nyquist—Shannon sampling theory, two sampling points per
minimal wavelength are required to reconstruct the wave—field. However, high
frequency components above the Nyquist frequency can be recovered theoretically by
introducing spatial derivatives of the displacements. In this talk we propose a
wavenumber domain optimization scheme for solving wave equations, which makes it
practical for numerical simulation beyond the Nyquist frequency. The key idea is
to approximate the spatial derivatives with wavenumber domain optimization in
wave—fields represented by both the wave displacements and their gradients. By using
extremely coarse grids, the new method achieves high computational efficiency to
perform the same modeling accuracy. Theoretical analysis and numerical experiments

for acoustic wave equation and shallow water wave equation will be presented.

A R PR S R YIBE R MR IU 5
it
BIERENAR
ARSI T R R T R RO A B, ST AR T BT R A E
ORI, BTt OB RO (RAE AR R . ARGE IR S AR AU P A 0 A2 o
PESTIERSEIURTH Ly R PIATLRE M T Bol tzmann J7 H A AR AS, HEAFF S M0 B
i, BTSSR SR AR ST, R T SR



FeLE B LR A

Wl — FlRE
W SR R
KEAZM RS — WILRGAEXFEERIEHO — FRALFIXIFRREEH
WEFIX I T E — 2PAT 5 8 2L sIE .
CREAR: mkmst i DA K E AR B4 9:20- R4 5:00, %A 3 705 MUt FTRIH3E;
Pegfe st X IR R M. 20 o/ N, 4 8:00- F4- 5:30)

i A A L = BB il

WENE

= . 0731)55665568, (073

2/ WH

ry
@Ry
AL =i

Rl Fg s — bt Hegerhly — =

KWEWHN: v EEAENTALRFH AR — Kibmeksguh — #ilmgeg i,
WU EF AN E — Kibwg, IR 20 20%h, Psi-Pia, Kb — i, —J3L 18 4
W, B4 7:22-F4 6:20, ZE4) 30.5, JiRF 23 404

Kmekmnh: ATl sh 3] — L E gk,
(Kybrd — B, —3L 18 @ %k, L4 7:22- T4 6:20, 2241 30.5, JiR) 23 4381

]

WHEAbY,: AT RAEREuL B — B kR
OMEJL — L, —3E 3 MER, T4 12:47- T4 6:36, 224y 18.5, il 14 735

]



HEAXAFZHZSITERZZRE N

gogoooobobooboboobbooboobbooboobobog
974000000981 ddgooooooooooooobboooooon
gboooboooboobobooboboooboooboooboooobog
o0odobobo0ooobuobooobooboobobooboobobobon
gooboooboob“cobbuooobboorbbooobboo“boOon
gpooog”ooboooboboo* obbor obbooboobboobgo
gooooboob”obooboobobuoobo“boboobooobobon
g7obobooboobobgsbbooboobbnboobuoobboooobo
igoboodooooo“cboo”obbooboooo“co"boobobo
goooboo“ggbboobrobooboo“bboooboroobbon
go*“ bobobbouog” gooboobobbbdoooogoobnb 2012000000
gobobobobbododddied20700dbbooooooononboOn B+d
OO0 20170000000000 20170 5000 ESI000 1%02014000
obooooboobo“cboobuooboboroon

opooooboobobooboboobboobboobbooobooon
goobb 1010000bob s oug 33000 on 230000
0 320070% 0000 0ooooboooooooboooooboboboon
gpooo“gobooroboobbooboi1oboobbooboobobon 2
go“bbodgoooobbo”ogoobboobbbodoooooobo s3oon
gpooobi1obo0o“coobooo bbb 200bbo* booobbooon”
o010 bo“0bob0oooboobobuoob"oboobobobon
gpooobbi10boobooboooobo20bobboobooboon
2000000000000 b0bD1b0bb0b000oooobobo1b00b00 20
obobobobboooooobbbbbodgod saitn Advances in Applied
Mathematics and Mechanicsl U U O U 00O O0ODOOO0O0O0O0O0O0O0OOO0O
ooodoboboooboobbooobuoobooooo

gooobobooboobbooboobobbooooboobbooo
o0oddoboboboobuoobbooboooobboobooboboooo
goooobogbobooobuoobboobbooobboobooboon



guooobobbtbdoobtbbooouoooobobbbbooogsgoon
gobobobbobozogobbobobozoggbbbbooooooobooo
guooobobbtodgbbbtbooouooooobobbebbooooon
gud4stbbpbggooobbbbooooobrgdgddobn
gobobobbbuogoogobbobbbooodbbooboooooonoo
gmobbboogomoobboomoobobbboooooooboon
gobbobbobbobbobdooooooobobobobbbobuooooon
guoouobbotbs4sbbbbbgoooobbbbooooobbboooo
gobobobbbbougooobobbobbbudoooobbobid FoxdUd
gobobobbbuggobbobbbugoogbobboooooooobobo
guooobobbtoogoooobbobbbboooouooooobboon
gobobobobogbbbobboodbbbbtodoooobboooobbon
guobbgoobbboogoobbooobbboooobuoooobbod
godgogoooobobbobodddddooooooooooooon
guoooobbbodgoobb 240 dddgoooobboooooon
guooobobbtoooooobbbooooooobbbobbbooooon
“gOobbooooobbobbbbbdouuooooobbobbooooa
guooobobbbodgodobbb2o4bbbbgoboodg3ggooon
gobbbbbbodgooob 3gooogobbob400nobbbbogg
2000 boooorgoooobbouoooobbroobbbn
gobooo

gobbbobbuoogooobbbobbbooooobobbobboodon
guoooobbgoooob, ggobbobbuooobobbuoooooon
gobbobobbbbotbdooooooobobobbboboooooon
guooobobbboooooboobbbbbogdooooobbobooooon
gobbobbbuogoogbobbbugooobobbbooooobobooo
gububoobtooooobobboooooobbboogb sagoon
guoooobbotgdesigoboob 20000

gobbobboogooobbbobbbooooobobboobgon
Bvioboogggdgogosguoudorropst oo oonog
goboboboboboodgd



	湘潭大学数学与计算科学学院简介

