Snapshots of Jinchao Xu’s Research Results
on Numerical Methods for PDEs and Deep Learning

STATEMENT OF ACCOMPLISHMENTS (250 words)

Xu has made many fundamental and impactful contributions to numerical methods, especially the multi-grid (MG)
and domain decomposition (DD) methods, for solving partial differential equations (PDEs).

He is renowned for the Bramble-Pasciak-Xu (BPX) preconditioner [1990] (a basic algorithm for solving elliptic
PDEs) and the Hiptmair-Xu (HX) preconditioner [2007] (an effective Maxwell solver featured in a 2008 report by
the U.S. Department of Energy as one of the top 10 breakthroughs in computational science in recent years).

He developed the framework and theory of the Method of Subspace Corrections [1992] that have been widely used
in the literature for design and analysis of iterative methods and later established the Xu-Zikatanov (XZ) identity
[2002], giving the optimal theory for these methods.

Other contributions by him (with collaborators) include:

the first uniform convergence theory [1991] for the multiplicative DD and MG methods with minimal regularity
assumptions for the underlying PDE;

the first optimal algorithms and theory based on auxiliary grid etc. [1996] and asymptotically exact a posteriori
error estimator [2003], both for PDEs discretized on unstructured grids;

the two-grid discretization techniques [1996] which opened new research avenues for solving linear and nonlinear
PDEs;

the design and analysis of new algorithms for modeling non-Newtonian flows with high Weissengberg numbers
[2006];

the only known canonical construction of finite element family for any order of elliptic PDEs in any spatial
dimensions [2013];

the FASP software-package (http://fasp.sourceforge.net/) providing advanced solvers for coupled PDE systems.



Below are some examples of Jinchao Xu’s works on numerical methods for partial differential equations. His research
involve the study of discretization, grid adaptation, iterative methods and applications for partial differential equations.

1 Basic Iterative and Preconditioning Algorithms

This line of works are concerned with fast iterative methods (mostly based on preconditioned Krylov space methods)
for solving discretized partial differential equations.

1.1 BPX preconditioner

Bramble-Pasciak-Xu ([3], 1990) introduced what is now known as the BPX-preconditioner. This method, originally
described in Xu’s PhD thesis ([29], 1989), is one of the two most powerful multigrid approaches for solving large-scale
algebraic systems that arise from the discretization of models in science and engineering described by partial differential
equations. The method has been widely used by researchers and practitioners since 1990.

1.2 HX Preconditioner

Xu ([31], 1996) developed the auxiliary space method, a technique that uses a more structured space to construct
an efficient subspace correction method for less structured problems. A generalization of this idea when used in concert
with the BPX preconditioner led to the optimal preconditioner of Hiptmair-Xu ([14], 2007). The method, now known as
HX-preconditioner, is a theoretically optimal and practically easy-to-use iterative method for the so-called H(curl) and
H(div) systems that have direct applications to electro-magnetic equations and porous media flows. In this algorithm,
for example, a (vector) Maxwell equation in 3 dimensions is transformed into solution of 4 (scalar) Poisson equations.
The HX-preconditioner was identified in 2008 by the U.S. Department of Energy as one of the top ten breakthroughs
in computational science in recent years. Researchers from Sandia, Los Alamos, and Lawrence Livermore National
Labs use this algorithm for modeling fusion with magnetohydrodynamic equations. Moreover, this approach will also
be instrumental in developing optimal iterative methods in structural mechanics, electrodynamics, and modeling of
complex flows.
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Figure 1: Scalability and Speedup of HX preconditioner

Compared with algorithms previously used by LLNL, the HX preconditioner:
e Speeds up computational time on 512 processors by a factor of 24.

e Speeds up the magnitude by more than order of 2 on 1,024 processors.



And, the HX preconditioner:

e Takes less than 2 minutes to provide an accurate solution to a Maxwell equation with more than 35 million
unknowns on 1,024 processes.

e The scalability of HX preconditioner is verified to 125,000 cores, for the problem with 12 billion DOF's in total.

1.3 Optimal preconditioners for 2nd and 4th order elliptic equations discretized on
unstructured grids

With FFT or geometric multigrid methods, it is well-known the discretized system from the finite element approxi-
mation of both 2nd and 4th order elliptic boundary value problems discretized on structured grids with N unkowns can
be solved within O(N log™ N) operations. But a rigorous theoretical extension of such results to unstructured grids is
difficult. In Xu ([31], 1996), he developed a multigrid algorithm and a rigorous theory showing its near-optimality of
O(Nlog™ N) for unstructured quasi-uniform grids. Recently, Grasedyck, Wang and Xu ([12], 2016) extended this result
to more general unstructured which need not to be quasi-uniform.

Recently, Xu with his former postdoc Zhang ([39], 2014) made a nontrivial extension of the above results to 4th
order elliptic problems. They proposed the first mathematically provable O(N log N) algorithm for linear systems arising
from the direct finite element discretization of fourth-order problems on an unstructured grid of an arbitrary domain.
This one-grid multilevel method presents a new approach to applying the divide-and-conquer strategy. It shows that
some mixed-form discretizations of the fourth-order problems, which of themselves lead to non-desirable — i.e., either
non-optimal or nonconvergent approximations of the original solution, can provide optimal preconditioners for direct
finite element discretizations. It is rigorously shown that the preconditioners can be reduced to the solution of a fixed
number of discrete Poisson equations. This approach will also be instrumental in the development of optimal iterative
methods in high-order problems.
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Figure 2: Eigenvalue distribution of a preconditioned system: Only a few bad?? eigenvalues are evident, which is
favorable for the PCG method.

2 Algebraic Multigrid Methods

In addition to the GMG and single-grid multilevel method, Algebraic multigrid (AMG) methods were designed in
an attempt to start from the algebraic linear system directly.

Recently, Xu and Zikatanov ([37]) provides an overview of AMG methods for solving large-scale systems of equations,
such as those from discretizations of partial differential equations. AMG is often understood as the acronym of “algebraic
multigrid”, but it can also be understood as “abstract multigrid”. Indeed, they demonstrate how and why an algebraic
multigrid method can be better understood at a more abstract level. They try to develop a unified framework and theory
that can be used to derive and analyse different algebraic multigrid methods in a coherent manner. Given a smoother
R for a matrix A, such as Gauss—Seidel or Jacobi, they prove that the optimal coarse space of dimension n. is the span
of the eigenvectors corresponding to the first eigenvectors RA. They also prove that this optimal coarse space can be
obtained via a constrained trace-minimization problem for a matrix associated with RA, and demonstrate that coarse



spaces of most existing AMG methods can be viewed as approximate solutions of this trace-minimization problem.
Furthermore, they provide a general approach to the construction of quasi-optimal coarse spaces, and prove that under
appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with
respect to the size of the problem, the coefficient variation and the anisotropy. Their theory applies to most existing
multigrid methods, including the standard geometric multigrid method, classical AMG, energy-minimization AMG,
unsmoothed and smoothed aggregation AMG and spectral AMGe.

3 Deep Learning
3.1 MgNet: A Unified Framework of Multigrid and Convolutional Neural Network

Recently, Xu and his collaborator proposed an abstract and unified mathematical framework, known as MgNet, that
simultaneously recovers some convolutional neural networks (CNN) for image classification and multigrid methods for
solving discretized partial differential equations. Different from the viewpoint of approximation and dynamic systems,
MgNet is based on close connections that they have observed and uncovered between the CNN and MG methodologies.
For example, pooling operation and feature extraction in CNN correspond directly to restriction operation and iterative
smoothers in MG, respectively. As the solution space is often the dual of the data space in PDEs, the analogous
concept of feature space and data space (which are dual to each other) is introduced in MgNet. By investigating the
iterative schemes for dual variables, they established the connections between different ResNet type CNN architectures
and smoothers in MG. With such connections and new concept in the unified model, the function of various convolution
operations and pooling used in CNN can be better understood.

The MgNet framework opens a new door to the mathematical understanding, analysis and improvements of deep
learning models. The very preliminary results presented in ([13], 2019) have demonstrated the great potential of MgNet
from both theoretical and practical viewpoints. Obviously many aspects of MgNet should be further explored and expect
to be much improved. In fact, only very few techniques from multigrid method have been tried and many more in-depth
techniques from multigrid require further study for deep neural networks, especially CNN. In particular, it is believed
that the MgNet framework will lead to improved CNN that only has a small fraction of the number of weights that are
required by the current CNN. On the other hand, the techniques in CNN can also be used to develop new generation of
multigrid and especially algebraic multigrid methods ([37], 2017) for solving partial differential equations.

4 New Discretization Methods

Xu has done a lot of works on the construction of finite element discretization for problems ranging from basic model
problems to complicated coupled systems of nonlinear partial differential equations. For coupled nonlinear PDEs, Xu
aims to design discretization schemes that are “solver-friendly”, namely the resulting discretized systems can be easily
solved by preconditioned Krylov space method based on BPX and HX preconditioners.

4.1 Morley-Wang-Xu Elements for High-order PDEs in High Dimensions

Xu and his collaborators have recently given the only canonical and universal construction of a class of convergent
finite element spaces for any 2m-th order of elliptic and parabolic equations in any spatial-dimensions R™. Their results
are a generalization of the Morley elements for m = n = 2 and they give piecewise polynomials of the lowest-order
degree to be used in constructing convergent, stable, and practical finite element discretization methods for higher-order
partial differential equations. Wang and Xu ([25], 2013) gives the construction for the case that 1 < m < n. Wu (Xu’s

current postdoc) and Xu ([26], 2017) are now finishing the construction for the more difficult case in which m =n + 1.
Table 1 depicts the degrees of freedom for the case that n < 3,m <n + 1.
An alternative generalization when m > n is developed by Wu and Xu ([27], 2017) by combining the interior penalty

and nonconforming methods. The finite element is the nonconforming element with shape function spaces P,,, which is
therefore minimal. The degrees of freedom are carefully designed to preserve the weak-continuity as much as possible.
For the case in which m > n, the corresponding interior penalty terms are applied to obtain the convergence property.

All other known finite element space families have been constructed for only a given n with m < 2 and the construction
given by Xu and collaborators are the only known constructions that are universal. It has many other interesting
theoretical properties. This new family of finite element methods provide practical discretization methods for, say, a
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Table 1: Degrees of freedom of MWX elements

6-th order elliptic equations in 2-dimension (which only has 12 local degrees of freedom) and 3-dimensions (which only
requires the use of 3rd order piecewise polynomials).

4.2 New discretization techniques for computational rheology

Xu and Young-Ju Lee (his former Ph.D. student) has developed an algorithm ([22], 2006) and relevant theory that
provides a solution to the so-called High Weissenberg Number Problem in numerical simulations for complex fluids.
Complex fluids, which include shampoos, paints and lubricants in our daily lives, are of universal industrial impor-
tance due to their unique mechanical properties, their capacity to solubilize and transport materials and their internal
microstructures. On the other hand, the complex physics of such fluids called non-Newtonian fluids presents many
challenges for the computational rheologists.

In ([22], 2006), they developed a numerical method that does preserve the positivity of the conformation tensor and
theoretically proved and numerically verified that their new method is stable with respect to any size of the Weissenberg
number. Their results indeed confirmed the importance of keeping the positivity of conformation tensor on the discrete
level and also theoretically explained why. But the positive preserving property of the scheme is only one of the many
important components that make their method work. Their method depends on careful use of many sophisticated
mathematical and numerical tools and techniques, including a reformulation of the constitutive relation as a generalized
Riccati equation in terms of convective derivatives, Eulerian-Lagrangian discretization for both the convective derivatives
and material derivatives, special positivity preserving schemes for temporal variable, positivity preserving schemes for
spatial variable, proper stable finite element spaces for velocity and pressure and volume preserving schemes for the
characteristic feet. The scheme can be applied to most of existing models in a unified framework.

In addition, Lee-Xu-Zhang ([18], 2011) developed numerical methods for non-Newtonian fluids that guarantee the
discrete system has a unique solution and there exists an iterative algorithm that converges uniformly with respect to
the Weissenberg number and Reynolds number.

One important feature of this new method is that only a linear Stokes-like equation needs to be solved at each time
step (in addition to various independent nonlinear ODEs associated with each grid point). The Stokes-like equation
can be effectively solved by (either geometric or algebraic) multigrid method. Furthermore, adaptive finite element
techniques can be easily applied to enhance the efficiency of the method.

This work was solicited by Professor T. Hughes to publish in a journal that he edits. Hughes is a world leading
researcher in computational mechanics and he regards this work highly.



4.3 Structure-preserving Discretization and Efficient Solvers of MHD Problems

Magnetohydrodynamics (MHD) is a coupled system of fluid dynamics and electromagnetism, with many important
applications in plasma physics, liquid metal industry, astrophysics and so on. Due to the complication of physics and
nonlinear coupling, it is challenging to design numerical schemes which preserve important physical laws. Gauss’s law
(divB = 0) and the normal continuity of the magnetic field are considered to be crucial, both for the physics and for the
success of numerical simulations. On the other hand, how to solve such a large algebraic system remains to be another
challenging problem.

In Hu, Ma and Xu ([15], 2017), we proposed a structure-preserving finite element scheme for unstructured mesh on
any Lipschitz domain, which achieved all the desired properties mentioned above. Magnetic field B and electric field
are solved at the same time. The energy stability and well-posedness are rigorously proved. For the stationary problems,
Hu and Xu proposed a new scheme in ([16], 2015) to achieve the above properties. Magnetic B and electric current j
are used as variables, so that there is no restriction on the Reynolds number. They use a new Lagrange multiplier to
guarantee the precise divergence-free condition of the magnetic field. Geometric and topological structures of the MHD
systems play an important role in the above study.

In order to solve the large algebraic systems, Ma, Hu, Hu and Xu ([24], 2016) designed efficient preconditioners and
solvers. The mathematical properties of the MHD systems are fully employed. The proposed preconditioners are robust
with various physical and discretization parameters, which are verified by both theory and numerical experiments.

There are some ongoing work. Using the idea developed above, we can design structure-preserving finite element
methods for Navier-Stokes-Maxwell systems with displacement current, which is considered as a more difficult problem
in the numerical simulations and analysis. We can prove the well-posedness in a stronger norm. For the nonlinear
problems, we can prove the existence of solutions and convergence of linearized iterations rigorously.

4.4 Extended Galerkin Methods

Extended Galerkin (XG) method is a general framework for the derivation and analysis of many different types of
finite element methods (including various discontinuous Galerkin methods). For second order elliptic equation, this
framework employs four different discretization variables, uy, pp, i and pp, where uy, and py, are for approximation of
u and p = —aVu inside each element, and 4, and pj, are for approximation of residual of v and p - n on the boundary
of each element. The resulting 4-field discretization is proved to satisfy inf-sup conditions that are uniform with respect
to all discretization and penalization parameters. As a result, most existing finite element and discontinuous Galerkin
methods can be derived and analyzed using this general theory by making appropriate choices of discretization spaces
and penalization parameters.

We first propose the XG method for elliptic problem. As we know, there are two major variational formulations
for elliptic problem. The first one, namely the primal method, is to impose the continuity of u € H'(£2). The second
one, namely the mixed method, is to impose the continuity of p € H(div,). In correspondence to the two variational
formulations, two different conforming finite element methods can be developed. The first one, which approximates
u € H5(Q) and known as primal finite element methods (FEMs) contain one unknown, namely u, to solve. The second
one, which approximates p € Hy(div;§2) and u € L?() based on a mixed variational principal, is called the mixed
FEMSs. These mixed methods solve two variables, namely flux variable p and u, and the condition for the well-posedness
of mixed formulations is known as inf-sup or the Ladyzhenskaya-Babuska-Breezi condition.

As a key step in XG method, two additional residual corrections are introduced, which gain the flexibility of boundary
finite element spaces for both v and p - n. More specifically, XG method is presented in terms of four discretization
variables, namely

Ph, DPhy Uh, Un.

Given a triangulation of Q={K}, the u; and p; are discontinuous piecewise polynomial approximations of u and p,
respectively. The variable @) and pp are introduced for the following approximation on element boundary

u R Up + Up, PN XPp-Me+pn, e=K NK™.

where u, and pj are numerical traces on the common edge or face. The Nitsche’s trick for %, and p, will be used.
Hence, XG method develops a concise formulation in terms of four variables py, Py, up, tp, which contain all the possible
variables in most of the existing FEMs. Therefore, it has the flexibility to unify most of the existing FEMs:



1. Under proper choices of the discrete spaces, XG recovers the H! conforming finite element if we eliminate all
the discretization variables except up. By eliminating pp, XG recovers the hybrid methods in which @ serves
as a Lagrange multiplier to force the continuity of p - n across the element boundary. If we further eliminate
the Lagrange multiplier, the resulting system needs to solve two variables p;, and wy, which recovers the H(div)
conforming mixed finite element method.

2. The relationship between XG and discontinuous Galerkin methods is twofold. First, by simply taking the trivial
spaces for @, and pp, XG recovers most of discontinuous Galerkin methods.

3. XG can be compared with most hybridized discontinuous Galerkin methods if py, is eliminated.

4. XG can be compared with most weak Galerkin methods if 4, is eliminated.

In addition, two types of uniform inf-sup conditions for XG method can be established and the relationship between
H?' conforming method, mixed method and XG method can be seen.

Finally, we consider the XG method for elasticity method which contains the conforming mixed method, noncon-
forming mixed method, hybrid mixed method method as special cases and further some new methods are proposed
there.

4.5 Analysis of the numerical schemes for phase field models and modeling of the mul-
tiphase problems

In recent years, the Allen-Cahn and Cahn-Hilliard equations have gained great popularity in a variety of moving
interface problems in the materials science and fluid dynamics through a phase field approach. Partially implicit (or
partially explicit) schemes, such as the convex splitting schemes (CSS in short), are among the most popular numerical
schemes used in phase-field modeling. Using both theoretical analysis and numerical experiments, Xu, Li, and Wu ([36],
2016) demonstrate that all existing partially implicit schemes for phase-filed simulations may lack convergence accuracy.
As the main example, they first show that some well-known CSS can be interpreted as some fully implicit schemes (FIS
in short) in disguise. For the Allen-Cahn model, we prove that the standard CSS is exactly the same as the standard
FIS but with a (much) smaller time step size and as a result, it would provide an approximation to the original solution
of the Allen-Cahn model at a delayed time (although the magnitude of the delay is reduced when the time step size is
reduced). Such time delay is also observed for other partially implicit schemes when time step size is not sufficient small.
For the Cahn-Hilliard model, we prove that the standard CSS is exactly the same as the standard FIS for a different
model that is a (nontrivial) perturbation of the original Cahn-Hilliard model.

Motivated by the equivalence between CSS and FIS, they also propose a modification of a typical FIS for the Allen-
Cahn model so that the maximum principle will be valid on the discrete level and we further rigorously prove that, the
linearization of such a modified FIS can be uniformly preconditioned by a Poisson-like operator.

For the multiphase modeling and discretizations, the mathematical properties and numerical discretizations of mul-
tiphase models that simulate the phase separation of an N-component mixture are studied by Wu and Xu ([28], 2017).
For the general choice of phase variables, the unisolvent property of the coefficient matrix involved in the N-phase
models based on the pairwise surface tensions is established. Moreover, the symmetric positive-definite property of the
coefficient matrix on an (N — 1)-dimensional hyperplane — which is of fundamental importance to the well-posedness of
the models — can be proved equivalent to some elegant physical condition for pairwise surface tensions. The N-phase
Allen-Cahn and N-phase Cahn-Hilliard equations can then be derived from the free-energy functional. Finite element
discretizations for N-phase models can be obtained as a natural extension of the existing discretizations for the two-phase
model.

5 Theories

Most of the pure theoretical works done by Xu involve the abstract framework and convergence analysis of various
iterative methods including multigrid and domain decomposition methods. Examples of theoretical works are also given
on some very basic questions in numerical analysis.



5.1 Framework of the method of subspace correction

In Xu ([30], 1992), a general theoretical framework on iterative methods based on space decompositions and subspace
correction is proposed. In this work, many standard linear iterative methods such as multigrid and domain decomposition
methods are cast and analyzed in a unified framework. This framework changed the understanding of iterative methods
and, together with subsequent research on subspace correction methods, it is considered a milestone in the development
of multilevel iterative methods. In particular, [30] is a highly cited paper. This is a highly impactful and highly cited
paper (which had 1267 citations according to scholar.google.com as of May 16, 2017).

5.2 XZ identity

Xu-Zikatanov ([33], 2002), published in the Journal of American Mathematical Society (JAMS) made substantial
progress in regard to the theory of the subspace correction method and obtained the sharpest possible estimate for the
convergence of the subspace correction method. Most of the existing estimates (which have been studied in hundreds of
papers) can be easily derived from this identity.

Consider the linear system Au = f. Let operator B be defined by the Successive Subspace Correction (SSC) method.
Then, the following X-Z identity holds when each subspace problem is solved exactly:

1
1+c¢o’

|- BAG =1~

where
cg= sup _inf E II1P; E ijAi.
o] a=1 22 vi=v i
Here are some more related works:

e Lee, Wu, Xu and Zikatanov ([19], 2006; [21], 2008) extended the identity to symmetric positive semi-definite
system

e Lee, Wu, Xu and Zikatanov ([20], 2007) applied the identity to find a very simple and practical condition that
gives uniform convergence for nearly singular systems.

5.3 Optimal theories for iterative methods such as multigrid and domain decomposition
methods

In the last three decades, Xu has been a world leading analyst on the theoretical foundation for various iterative
methods. He is well-known for various fundamental theoretical results that he has obtained with co-workers for multigrid
and domain decomposition methods. In the early stage of his career, in joint of his collaborators, he wrote several
fundamental papers on the convergence analysis of multigrid and domain decomposition methods. Here are three
examples: In Bramble, Pasciak and Xu ([4], 1991), they provided a convergence theoretical framework for analyzing
multigrid algorithms with non-embedded spaces or non-inherited quadratic forms which has a wide range applications
(with 267 citations as shown in Google Scholar July 2016). In Bramble, Pasciak, Wang and Xu ([5], 1991), this paper is
the first analysis of the uniform convergence of multiplicative overlapping domain decomposition method. Another paper
by Bramble, Pasciak, Wang and Xu ([6], 1991) is a new multigrid convergence theory without using elliptic regularity.

5.4 Removal of “1”

Xu-Zikatanov ([34], 2003) made a key observation on abstract error estimates for Galerkin approximations based on
Babuska-Brezzi conditions. In all the earlier papers and textbooks, the following error estimate is often presented:

lu = unlly < (1 + C)inf flu — whlly-.

Here uy, is a general Galerkin approximation of u which can often be written as up = Pju for some idempotent operator
Pp, and C = || Py||. By observing the identity that || P|| = ||I—P|| for any nontrivial idempotent operator P. Xu-Zikatanov
([34], 2003) removed the constant “1” from the above estimate to get the following sharp estimate:

lu — uplluv < Cinf ||u — wp|v.
wp,



Given the fundamental nature of these estimates in numerical analysis, this simple improvement is mathematically
pleasing.

5.5 Lower Bounds of the Discretization Error for Piecewise Polynomials

Lin, Xie and Xu ([23], 2014) proved the sharp lower-bound error estimate of the approximation error by piecewise
polynomials function spaces. Precisely, the following lower error bounds are valid for finite element (consisting of
piecewise polynomials of a degree less than r) approximation to 2m-th order elliptic boundary value problems:

lu —unljpn > Ch", 0<j<r, Yu € WrHoP(Q),

where the positive constant C' is independent of the mesh size h. This result is further extended to various situations
including general shape regular grids and many different types of finite element spaces. This appears to be a very
fundamental question in approximation theory in general and in particular it has been used especially in the analysis
lower-bound eigenvalue approximations in the literature.

6 Adaptivity: a new class of error estimators for adaptive finite element
methods

A finite element discretization based on more or less uniform grids, even though it is stable, robust and can be
applied with fast algebraic solvers such as multigrid, may still not be efficient enough for solution that change much
more rapidly in some parts of the region than the other. One practical approach, known as adaptive finite element
method, is to use grids that are locally adapted according to the behavior of the solution, namely more grid points
will be placed in the region where the solution changes more rapidly. The problem is that the solution is unknown in
advance and a good adaptive procedure requires a computable and reliable error estimator. It has been a very active
research subject in recent years to develop a posterior error estimates (that are mostly problem-dependent) for such a
purpose.

One major limitation of the existing adaptive finite element methods is that the underlying a posterior error estimators
are often problem-dependent. In a recent work, Bank and Xu ([1, 2], 2003) developed a new class of error estimates that
are problem-independent and can be applied to various different problems (such as the aforementioned complex fluids
models) with no or very little modification. They also showed that the estimators are asymptotically exact for a variety
of applications. While there are many other problem-independent error estimators that have been used in practice, the
Bank-Xu method seems to be the only one that has a solid mathematical foundation and yet is practically efficient
for various applications. This new error estimator has replaced the more traditional error estimators that have been
used for about two decades in Randy Bank’s popular PLTMG code and it gives outstanding performances for many
applications.

Other works on adaptivity

Here are some other works that Xu has done on adaptivity:

e [1, 2] (2003) and [17] (2008) obtained superconvergence for linear and quadratic elements respectively on mildly
structured grids, and some theoretical justification for the Zienkiewicz-Zhu error estimator ([32], 2004).

e Chen, Sun and Xu ([8], 2007) have developed anisotropic refinement and mesh optimization techniques based
on minimizing the interpolation error in L? norm. Chen and Xu ([11], 2004) further defined and studied optimal
triangulations using the interpolation error as a quality of the triangulation and got some properties of the optimal
triangulations and sufficient conditions for a triangulation to be near optimal. The anisotropic refinement and
mesh optimization techniques are successfully applied to convection dominated problem by Chen, Sun and Xu ([7],
2005). Chen and Xu ([9], 2005; [10], 2008) gave a theoretical justification of the algorithm for a 1-d convection
dominated problem and obtain optimality of the streamline diffusion finite element method.



7 Practical Applications

In recent years, Xu has spent significant portion of his time in applying advanced numerical techniques to very
practical problems.

7.1 Reservoir Simulation

Reservoir simulation is the art of combining physics, mathematics, reservoir engineering, and computer programming
to develop a tool for predicting hydrocarbon reservoir performance via various operating strategies. It is an important
decision-making tool. For example, engineers use it to obtain information pertaining to the processes that take place
in oil reservoirs. Such information enables an analysis of the various recovery strategies in order to effect optimal oil
recovery. The crucial part of reservoir simulations is to solve large-scale discretized PDEs (highly coupled, nonsymmetric,
and indefinite) over and over again. However, this is also the most time-consuming process of any modern petroleum
reservoir simulator (more than 75%). The complexity of the geometry and of the physical model, heterogeneity, and
size of reservoir model are continuing to grow, which makes these linear systems more difficult to solve using standard
direct or iterative solvers.

The FASP Method for Reservoir Simulations The FASP method takes full advantage of the underlying physical
and analytic properties of the mathematical model.
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e Transforms the complicated Jacobian system into three simpler auxiliary problems: an elliptic problem for the
pressure variables, a hyperbolic problem for the saturation variables, and a purely algebraic problem for the well
bottom-hole pressure variables.

e Thus, it can be used to design efficient and robust smoothers or preconditioners for each auxiliary problem.

e It then couples the auxiliary problems and applies the preconditioned Krylov subspace methods.
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7.2 Fluid Structure Interaction

Fluid-structure interaction (FSI) aims at understanding the interaction between moving structure and fluid and
how their interaction affects the interface between them. FSI has a wide range of applications in many areas including
hemodynamics and wind /hydro turbines simulation. FSI problems are computationally challenging. The computational
domain of FSI consists of fluid and structure subdomains. The position of the interface between fluid domain and
structure domain is time dependent. Therefore, the shape of the fluid domain is one of the unknowns, increasing the
nonlinearity of the FSI problems.

Monolithic Solver for FSI Numerical solutions of FSI are roughly classified into partitioned approaches and mono-
lithic approaches. Partitioned approaches employ single-physics solvers to solve the fluid and structure problems sepa-
rately and then couple them by the interface conditions. Monolithic approaches solve the fluid and structure problems
simultaneously. Monolithic approaches are considered more stable, although it is accompanied with larger linear sys-
tems and higher computational cost. In ([35], 2015), Xu and Yang (his former Ph.D. student) developed a well-posed
numerical methods for fluid—structure interaction and designed several robust preconditioners for discretized systems.

e Lagrangian coordinate is used for structure equations, and Eulerian coordinate for fluid equations. They use ALE
method to update the fluid mesh.

e They discretize the coupled fluid and structure equations in a single linear system.

e In order to solve it efficiently, they develop block preconditioners for this problem, which proves to be robust with
respect to varying parameters and problems sizes.

Hydroelectric Generator Hydroelectric generator simulation involves the moving fluid domain, which is due to the
rotation and deformation of the blade of the generator. Therefore, efficient monolithic solver for the couple system is
difficult to construct. In order to simulation fluid coupled with rotating structures, like hydroturbine in hydroelectric ,
Yang, Sun, Wang, Xu and Zhang ([38], 2016) develop a new ALE method to update the fluid mesh so that it can handle
arbitrary rotation.

Artificial Heart Artificial heart is a kind of effective treatment for heart failure, which is the finial battlefield of
cardiovascular disease. The artificial heart significantly changes the hemodynamics of the aorta. The main difficulty of
artificial heart simulation is the complex interaction between blood, aorta and artificial heart.

7.3 Energy Storage

Lithium Ion Battery Lithiumion batteries are rechargeable, and they are characterized by lithium ions that move
from the negative electrode to the positive electrode during discharge and then back again during charging.

Newton-Krylov-Multigrid Schemes for Lithium Ion Battery Simulation
e Finite volume method

e Newton’s method for the Butler-Volmer equation, and the whole nonlinear system
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Number of iterations for preconditioned MINRES for different time step sizes

k=0.01 k =0.001 k = 0.0001

preconditioner | M1 | M2 | M3 | SC | M1 | M2 | M3 | SC | M1 | M2 | M3 | SC
mesh 1 9 6 11 | 37 9 6 11 | 25 8 7 11 | 23
mesh 2 9 6 11 | 59 9 7 11 | 28 7 7 11 | 23
mesh 3 9 6 11 | 132 | 8 7 11 | 48 9 5 12 | 29

Figure 5: Turek benchmark and result

e Krylov subspace method (GMRes) with block Gauss-Seidel preconditioner

e Multigrid method for solving the Poisson-like problems in the preconditioner

7.4 Fuel Cells

A fuel cell is a device that converts a fuel’s chemical energy from a fuel into electricity through a chemical reaction
with oxygen or another oxidizing agent. Hydrogen is the most commonly used fuel for this purpose, but hydrocarbons
such as natural gas and alcohols like methanol are sometimes used.

Robust Methods for Fuel Cells
e Newton’s method for the nonlinear system
e Kirchhoff transformation
e Finite element-upwind finite volume method
e Nonoverlapping Schwarz domain decomposition method

e Overlapping domain decomposition method with non-matching grids Newton-Krylov-based solvers

7.5 Software development: FASP

Over the last few decades, researchers have expended significant effort on developing efficient iterative methods
for solving discretized partial differential equations (PDEs). Though these efforts have yielded many mathematically
optimal solvers such as the multigrid method, the unfortunate reality is that multigrid methods have not been much
used in practical applications. This marked gap between theory and practice is mainly due to the fragility of traditional
multigrid (MG) methodology and the complexity of its implementation. In the last few years, Xu and his group aim to
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develop techniques and the corresponding software that will narrow this gap, specifically by developing mathematically
optimal solvers that are robust and easy to use in practice.

We believe that there is no one-size-for-all solution method for discrete linear systemsfrom different applications.
And, efficient iterative solvers can be constructed by taking the properties of PDEs and discretizations into account.
In this project, we plan to construct a pool of discrete problems arising from partial differential equations (PDEs) or
PDE systems and efficient linear solvers for these problems. We mainly utilize the methodology of Auxiliary Space
Preconditioning (ASP) to construct efficient linear solvers. Due to this reason, this software package is called Fast
Auxiliary Space Preconditioning or FASP for short.

FASP contains the kernel part and several applications (ranging from fluid dynamics to reservoir simulation). The
kernel part is open-source and licensed under GNU Lesser General Public License or LGPL version 3.0 or later. Some
of the applications contain contributions from and owned partially by other parties.

For details, see http://fasp.sourceforge.net
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