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Abstract

In this paper we develop and analyze several preconditioners for the linear systems arising from discretized poroelasticity
problems. The preconditioners include one block preconditioner for the two-field Biot model and several preconditioners for the
classical three-field Biot model. We manage to analyze these different preconditioners under a same theoretical framework and
show that all of them are uniformly optimal with respect to material and discretization parameters. Numerical tests demonstrate
the robustness of these preconditioners.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Poroelasticity, the study of the fluid flow in porous and elastic media, couples the elastic deformation with the
fluid flow in porous media. As one popular poroelasticity model, the Biot model has wide applications in geoscience,
biomechanics, and many other fields. There are many issues needed to be addressed in numerical simulations of
poroelasticity such as the numerical instability of pressure variable under certain conditions [1–4]. One source of
this instability is the instability of the finite element approximation for the coupled systems [2,3]. This motivates
us to study the well-posedness of the finite element discretization.

Another interesting topic is the development of efficient linear solvers. Direct solvers have poor performance
when the size of problems becomes large. Iterative solvers are good alternatives, as they exhibit better scalability, but
the convergence of iterative solvers is known to be much problem-dependent such that there is a need for developing
parameter-robust preconditioners. For example, the multigrid preconditioned Krylov subspace method usually has
optimal convergence rate for the Poisson equation and many other symmetric positive definite problems [5,6].
However, for poroelasticity problems, coupled systems of equations must be solved, which are known to be
indefinite and ill-conditioned [7]. Preconditioning techniques for poroelasticity problems have been the subject
of considerable research in the literature [3,8–14] and most of the techniques developed are based on the Schur
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complement approach. In [10,11], diagonal approximation of the Schur complement preconditioner is used to
precondition two-field formulation of the Biot model. In [12,13], Schur complement preconditioners are also studied
for two-field formulation with the algebraic multigrid (AMG) as the preconditioner for the elasticity block. In [3],
Schur complement approaches for three-field formulation are investigated. Recently, robust block diagonal and
block triangular preconditioners are developed in [15] for two-field Biot model. And for classical three-field Biot
model, the robust block preconditioners are designed in [16,17] based on the uniform stability estimates. Robust
preconditioner for a new three-field formulation introducing a total pressure as the third unknown is analyzed
in [18]. Robust block diagonal and block triangular preconditioners are also developed in [19] based on the
discretization proposed in [20]. Other robustness analysis for fixed-stress splitting method and Uzawa-type method
for multiple-permeability poroelasticity systems are presented in [21] and [22].

The focus of this paper is on the stability of the linear systems after time discretization and several robust
preconditioners for the iterative solvers under the unified relationship framework between well-posedness and
preconditioners. The block preconditioners in [15] for two field formulation and in [16,19] for the three field
formulation can be briefly written in this framework. In addition, we analyze the well-posedness of the linear
systems and propose other optimal preconditioners for the Biot model [2] based on the mapping property [23]. By
proposing optimal block preconditioners, we convert the solution of complicated coupled system into that of a few
symmetric positive definite (SPD) systems on each of the fields.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction of the Biot model.
In Section 3, we introduce one theorem in order to prove well-posedness. In Section 4, we address the unified
framework indicating the relationship between preconditioning and well-posedness of linear systems. In Section 5
and Section 6, we show the well-posedness and several optimal preconditioners for the Biot model under the unified
framework. In Section 7, we present numerical examples to demonstrate the robustness of these preconditioners.

2. The Biot model

The poroelastic phenomenon is usually characterized by the Biot model [24,25], which couples structure
displacement u, fluid flux v, and fluid pressure p. Consider a bounded and simply connected Lipschitz domain
Ω ⊂ Rn(n = 2, 3) of poroelastic material. As the deformation is assumed to be small, we assume that the deformed
configuration coincides with the undeformed reference configuration. Let σ denote the total stress in this material.
From the balance of the forces, we first have

−∇ · σ = f, in Ω .

In addition to the elastic stress

σe = 2µϵ(u) + λ(∇ · u)I,

the fluid pressure also contributes to the total stress, which results in the following constitutive equation:

σ = σe − αpI.

Here, µ :=
E

2(1+ν) and λ :=
νE

(1+ν)(1−2ν) are the Lamé constants and ν ∈ [0, 1/2) is the Poisson ratio, the symmetric
gradient is defined by ϵ(u) := (∇u+∇uT )/2, and α is the Biot–Willis constant. Therefore, we obtain the following
momentum equation

−∇ · (2µϵ(u) + λ(∇ · u)I − αpI) = f, in Ω .

Let η denote the fluid content. Then, the mass conservation of the fluid phase implies that

∂tη + ∇ · v = g in Ω , (1)

where g is the source density. The fluid content is assumed to satisfy the following constitutive equation:

η = Sp + α∇ · u, (2)

where S is the fluid storage coefficient. We also have the Biot–Willis constant α in this equation, as this poroelastic
model is assumed to be a reversible process and the increment of work must be an exact differential [24,26,27].
Based on (1) and (2), the following equation holds

α∇ · u̇ + ∇ · v + S ṗ = g, in Ω .
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According to Darcy’s law, we have another equation:

k−1v + ∇ p = r,

where k is the fluid mobility and r is the body force for the fluid phase.
We consider all the parameters to be positive. The following boundary conditions are assumed:

u = uD, on ΓD,u, σn = gN , on ΓN ,u, (3)

v · n = vD, on ΓD,v, p = pN , on ΓN ,v, (4)

where ΓD,u ∩ ΓN ,u = ∅, Γ̄D,u ∪ Γ̄N ,u = ∂Ω and ΓD,v ∩ ΓN ,v = ∅, Γ̄D,v ∪ Γ̄N ,v = ∂Ω .
The initial conditions are as follows:

u(x, 0) = u0(x), p(x, 0) = p0(x),

where u0 and p0 are given functions.
We use the backward Euler method to discretize the time derivative u̇:

u̇(tn) ≈
u(tn) − u(tn−1)

∆t
,

where ∆t is the time step size. More sophisticated implicit time discretizations result in similar linear systems. As
we are focusing on the properties of the linear systems resulting from the time discretized problem, we consider
only the backward Euler method for the sake of brevity. After the implicit time discretization, fast solvers are needed
to solve the following three-field system:⎧⎪⎪⎨⎪⎪⎩

−∇ · (2µϵ(u) + λ(∇ · u)I) + α∇ p = f,

k−1v + ∇ p = r,
α

∆t
∇ · u + ∇ · v +

S
∆t

p = g.

(5)

Note that the right-hand side of the last equation in (5) includes terms from previous time step due to the time
discretization. As the exact form of this right-hand side does not affect the well-posedness of the linear system, we
keep using g to denote it. We apply this convention to all the right-hand sides in similar situations, throughout the
rest of this paper.

To reduce the number of variables, the fluid flux v is eliminated to obtain the following two-field system:⎧⎨⎩ −∇ · (2µϵ(u) + λ(∇ · u)I) + α∇ p = f,
α

∆t
∇ · u − k∆p +

S
∆t

p = g.
(6)

In the rest of this paper, we develop block preconditioners for both the two-field and three-field systems.

3. Well-posedness of linear systems

In this section, we introduce the theorem to prove the well-posedness of the following saddle point problem:
Find (u, p) ∈ M × N such that ∀(φ, q) ∈ M × N, the following equations hold{

a(u, φ) + b(φ, p) =⟨ f, φ⟩,

b(u, q) − c(p, q) =⟨g, q⟩.
(7)

Here, M and N are given Hilbert spaces with the inner products (·, ·)M and (·, ·)N, respectively. The corresponding
norms are denoted by ∥ · ∥M and ∥ · ∥N.

Given b(·, ·), the following kernel spaces are important in the analysis:

Z = {u ∈ M|b(u, q) = 0, ∀q ∈ N},

K = {p ∈ N|b(φ, p) = 0, ∀φ ∈ M}.

We consider the orthogonal decompositions of u ∈ M and p ∈ N as follows:

u = u0 + ū, u0 ∈ Z, ū ∈ Z⊥, p = p0 + p̄, p0 ∈ K, p̄ ∈ K⊥.
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We will use these notation to denote the components of functions in the kernel spaces and their orthogonal
complements throughout the rest of this section.

The well-posedness of (7) can be proved provided that a(·, ·), b(·, ·), and c(·, ·) satisfy certain properties.
Let | · |e be a semi-norm on N such that |p|e ̸= 0, ∀p ∈ K⊥, |p|e = 0 if p ∈ K and ∥q∥

2
N := |q̄|

2
e + |q|

2
c , where

q̄ ∈ K⊥ and |q|
2
c = c(q, q).

Remark 1. It is worth noting that in case K = {0}, we have q̄ = q and ∥q∥
2
N = |q|

2
e + |q|

2
c .

Assume that the following inequalities

a(u, φ) ≤ Ca∥u∥M∥φ∥M, ∀u, φ ∈ M, (8)

b(u, p) ≤ Cb∥u∥M∥p∥N, ∀u ∈ M, p ∈ N, (9)

c(p, q) ≤ Cc∥p∥N∥q∥N, ∀p, q ∈ N, (10)

hold with the constants Ca , Cb, and Cc independent of parameters.

Theorem 1 ([28]). Assume that a(·, ·) and c(·, ·) are symmetric and positive semi-definite and that (8)–(10) hold.
Moreover, assume that

a(u, u) ≥ γa∥u∥
2
M, ∀u ∈ Z, (11)

sup
u∈M

b(u, q)
∥u∥M

≥ γb∥q∥N, ∀q ∈ K⊥, (12)

c(q, q) ≥ γc∥q∥
2
N, ∀q ∈ K, (13)

where the constants γa , γb and γc are independent of the parameters. Then, Problem (7) is uniformly well-posed
with respect to parameters under the norms ∥ · ∥M and ∥ · ∥N.

Theorem 1 will be used to prove the well-posedness in different cases. Note that they are sufficient conditions
for the problems to be well-posed. For weaker conditions, we refer to [29].

In this paper, we are especially interested in the robustness of preconditioners with respect to varying material
and discretization parameters guided by the well-posedness of the linear system. Thus we want to emphasize the
dependence on these parameters in inequalities. Therefore, we introduce the following notation: ≲, ≳ and ∼=. Given
two quantities x and y, x ≲ y means that there is a constant C independent of these parameters such that x ≤ Cy.
≳ can be similarly defined. x ∼=y if x ≲ y and x ≳ y.

4. Relationship between preconditioning and well-posedness

Given that a variational problem is well-posed, an optimal preconditioner can be developed, in order to speed
up Krylov subspace methods, such as Conjugate Gradient Method (CG) and Minimal Residual Method (MINRES).
In order to illustrate this fact, we first consider the following variational problem:

Find x ∈ X, such that

L(x, y) = ⟨f, y⟩, ∀y ∈ X, (14)

where X is a given Hilbert space and f ∈ X′.
The well-posedness of the variational problem (14) refers to the existence, uniqueness, and the stability ∥x∥X ≲

∥f∥X′ of the solution. The necessary and sufficient conditions for (14) to be well-posed are shown in the following
theorem. We assume the symmetry L(x, y) = L(y, x) in the rest of this section.

Theorem 2 ([30]). Problem (14) is well-posed if and only if the following conditions are satisfied:

• There exists a constant C > 0 such that L(x, y) ≤ C∥x∥X∥y∥X.
• There exists a constant β0 > 0 such that

inf
x∈X

sup
y∈X

L(x, y)
∥x∥X∥y∥X

= β0 > 0. (15)
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Consider the operator form of (14):

Lx = f ∈ X′.

Define operator P such that

(Pf, y)X = ⟨f, y⟩, f ∈ X′, y ∈ X. (16)

Assuming the well-posedness, then the following inequalities hold

∥PL∥L(X,X) = sup
x,y

(PLx, y)X
∥x∥X∥y∥X

= sup
x,y

⟨Lx, y⟩

∥x∥X∥y∥X
≤ C,

∥(PL)−1
∥

−1
L(X,X) = inf

x
sup

y

(PLx, y)X
∥x∥X∥y∥X

= inf
x

sup
y

⟨Lx, y⟩

∥x∥X∥y∥X
≥ β0.

Therefore, the condition number of the preconditioned system is proved to be bounded

κ̂(PL) := ∥PL∥L(X,X)∥(PL)−1
∥L(X,X) ≤ C/β0.

This type of preconditioners is frequently used in the literature and is characterized as “mapping property” in a
recent review paper [23].

Let {φi } be a set of given basis of X and {φ′

i } be a set of given basis of X′. Consider the matrix representations
of P and L :

P(φ′

1, . . . ,φ
′

n) = (φ1, . . . ,φn)P, L(φ1, . . . ,φn) = (φ′

1, . . . ,φ
′

n)L

and the vector representation of x:

x = (φ1, . . . ,φn)x .

Assume L is symmetric and P is SPD. Denote the mass matrix of X by M , i.e., Mi j = (φi ,φ j )X, ∀i, j . In fact,
P = M−1. Then

∥PL∥L(X,X) = sup
x,y

(PLx, y)X
∥x∥X∥y∥X

= sup
x,y

xT (P L)T My
(xT Mx)1/2(yT My)1/2 = max

λ∈σ (P L)
|λ|.

Similarly,

∥(PL)−1
∥

−1
L(X,X) = min

λ∈σ (P L)
|λ|.

Therefore, κ̂(PL) = κ̂(P L) =
maxλ∈σ (P L) |λ|

minλ∈σ (P L) |λ|
.

A more general approach is via norm equivalence matrices [31]. Given an SPD matrix H , H inner product and
H norm can be defined correspondingly:

(x, x)H := (H x, x), ∥x∥
2
H := (x, x)H .

Nonsingular matrices A and B are H-norm equivalent, denoted by A ∼H B, if there are constants γ and Γ
independent of the size of the matrices such that

γ ∥Bx∥H ≤ ∥Ax∥H ≤ Γ∥Bx∥H .

If A ∼H B and AB−1 is symmetric with respect to (·, ·)H , then MINRES preconditioned by B−1 has the following
convergence estimate [31]:

∥r k
∥H

∥r0∥H
≤ 2

(
Γ − γ

Γ + γ

)k/2

.

Consider the preconditioner P defined as the matrix representation of P in (16). It is easy to see that P−1
∼M−1 L .

Note that P = M−1.
This can help in the design of preconditioners for CG and MINRES. Preconditioning GMRES differs in that it

usually depends on the field of value analysis [31].
In the rest of the paper, we will use Theorem 1 to prove the well-posedness of the different formulations of the

Biot model under different choices of X. Then, based on the well-posedness, we show the corresponding optimal
block preconditioners.
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5. A two-field formulation

The preconditioning for the two-field system (6) has been studied extensively in the literature [10–13], where
the Schur complement approach is usually used to develop preconditioners. In this paper, similar to [15], we briefly
formulate a preconditioner based on the well-posedness of the linear systems for the two-field Biot model.

We first study the well-posedness of (6), beginning by changing the variable p̃ = −αp in order to symmetrize (6).
With an abuse of notation, we still use the notation p for pressure after the change of variable. Next, we introduce
the function spaces for the displacement and the pressure. Due to the boundary conditions (3), we consider

U ⊂ H 1
D(Ω ) := {u ∈ (H 1(Ω ))n

|u = 0, on ΓD,u}

for the displacement and

Qc ⊂ H 1
P (Ω ) := {p ∈ H 1(Ω )|p = 0, on ΓN ,v}

for the pressure. Here, we use the subscript “c” to suggest the continuity of the functions in Qc. We assume
|ΓD,u | > 0 in the rest of this paper so that the elasticity operator is nonsingular on U. We also assume that |ΓN ,u | > 0
such that the divergence operator is surjective on the pressure space.

Let PQ be the L2 projection from L2(Ω ) to Qc (space for pressure in two-field formulation case) or Q (space
for pressure in three field formulation case). Then, we define the following bilinear forms:

for u,φ ∈ U, a I (u,φ) = (2µϵ(u), ϵ(φ)) + (λPQ∇ · u, PQ∇ · φ),

for u ∈ U, p ∈ Qc, bI (u, p) = (∇ · u, p),

for p, q ∈ Qc, d I (p, q) = (κ−1
∇ p, ∇q) + (ξp, q),

where κ = α2/(∆tk) and ξ = S/α2.
Now, we introduce the notation for the kernel spaces:

ZI
= {u ∈ U|bI (u, q) = 0, ∀q ∈ Qc}, KI

= {p ∈ Qc|bI (φ, p) = 0, ∀φ ∈ U}.

The variational formulation of (6) is as follows:
Find (u, p) ∈ U × Qc such that ∀(φ, q) ∈ U × Qc, the following equations hold{

a I (u,φ) + bI (φ, p) =( f,φ),

bI (u, q) − d I (p, q) =(g, q).
(17)

We define the norms as follows:

∥u∥
2
U =a I (u, u), ∥q∥

2
Qc

= β−1
∥q∥

2
0 + d I (q, q), (18)

where β = max {µ, λ}.
This variational formulation (17) is proved to be well-posed under the norms ∥ · ∥U and ∥ · ∥Qc provided that the

following inf-sup condition holds

∀p ∈ (KI )⊥, sup
u∈U

bI (u, p)
∥u∥1

≳ ∥p∥0. (19)

It is well known that (19) holds for U = H 1
D(Ω ), Q = L2(Ω ) and U = (H 1

0 (Ω ))n , Q = L2
0(Ω ) on a bounded domain

Ω with Lipschitz boundary [32,33]. Moreover, (19) holds for stable Stokes finite element method (FEM) pairs [29].

Theorem 3. Assume that the inf-sup condition (19) holds and β = max {µ, λ}. The system (17) is uniformly
well-posed with respect to parameters under the norms ∥ · ∥U and ∥ · ∥Qc defined in (18).

Proof. To prove the well-posedness, we just need to verify the assumptions of Theorem 1.
As we assume that |ΓN ,u | > 0, we know that KI

= {0} and then (13) is trivial. By definition, (8)–(11) are
straightforward to verify.

Based on (19), the following inf-sup condition is implied

∀p ∈ (KI )⊥, sup
u∈U

bI (u, p)
∥u∥U

≳ ∥p∥Q. (20)

Then (12) is verified. Therefore, the proof is finished by applying Theorem 1.
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In [15], a result similar to Theorem 3 for two-field formulation of Biot model is shown for a stabilized scheme,
see Theorem 3 in [15]. Here we consider stable Stokes FEM pairs without stabilization and the proof is given under
an abstract setting, namely Theorem 1.

With the well-posedness of (17) proved, an optimal preconditioner can be formulated. We first introduce some
matrix notation. Given finite element basis functions {ui } and {pi } for U and Q, respectively, define the following
stiffness matrices: (Au)i j := a I (ui , u j ), (Bu)i j = bI (ui , p j ), (Ap)i j = d I (pi , p j ) and (Mp)i j = (pi , p j ).

The matrix forms of the system and preconditioner are

S I I
=

(
Au BT

u
Bu −Ap

)
and P I I

=

(
Au

β−1 Mp + Ap

)−1

,

respectively.

Remark 2. In case |ΓN ,u | = 0, the kernel space KI contains constant functions. We can similarly prove the
well-posedness, but the norm ∥q∥N has a term |q̄|e, which results in a dense matrix in the preconditioner. We refer
to [18] for constructing preconditioners related to |q̄|e.

In the literature, the preconditioners for two-field formulation are mostly based on Schur complement approaches.
The exact Schur complement preconditioner of S I I , i.e.,(

Au

Ap + Bu A−1
u BT

u

)
,

is known to be an optimal preconditioner [34], although Bu A−1
u BT

u is dense and cannot be obtained. Practical
approximations of Bu A−1

u BT
u , such as

Budiag(Au)−1 BT
u and diag(Budiag(Au)−1 BT

u ),

have also been investigated [10–13].
The two-field formulation is usually considered computationally efficient, as it involves the fewest variables and,

therefore, has smaller linear systems to solve than the three-field formulation (5). However, the two-field formulation
(with continuous pressure elements) exhibits oscillations in the pressure field, and more expanded systems such
as the three-field formulation, are shown to be more stable [2,35]. Motivated by this fact, we study a three-field
formulation [2] in the next section.

6. A three-field formulation

In this section, we will show the well-posedness of the three field formulation (5), briefly formulate the diagonal
block robust preconditioners of [16,19] as special cases, and propose some new preconditioners for the three field
formulation guided by the well-posedness.

6.1. The three-field formulation

We can write (5) as a symmetric problem by rescaling. Introduce

ṽ =
∆t
α

v, p̃ = −αp.

The three-field system (5) can be rewritten as⎧⎪⎨⎪⎩
−∇ · (2µϵ(u) + λ(∇ · u)I) − ∇ p̃ = f,

κ ṽ − ∇ p̃ = r,

∇ · u + ∇ · ṽ − ξ p̃ = g.

(21)

With an abuse of notation, we still use v and p to denote the scaled velocity ṽ, the scaled pressure p̃, respectively.
Then, we introduce the function spaces:

V ⊂ HD(div,Ω ) := {v ∈ H (div,Ω )|v · n = 0, on ΓD,v},

W = U × V, Q ⊂ L2(Ω ),
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and bilinear forms

for (u, v), (φ,ψ) ∈ W, a I I (u, v;φ,ψ) = a I (u,φ) + (κv,ψ),

for (u, v) ∈ W, p ∈ Q, bI I (u, v; p) = bI (u, p) + (∇ · v, p),

for p, q ∈ Q, cI (p, q) = (ξp, q), ξ > 0.

We define the corresponding kernel spaces related to bI I (·; ·)

ZI I
= {(u, v) ∈ W|bI I (u, v; q) = 0, ∀q ∈ Q},

KI I
= {p ∈ Q|bI I (φ,ψ; p) = 0, ∀(φ,ψ) ∈ W}.

Note that due to the assumption |ΓN ,u | > 0, we have KI I
= {0}.

Then, the weak formulation is as follows:
Find (u, v) ∈ W and p ∈ Q such that ∀(φ,ψ) ∈ W and q ∈ Q, the following equations hold{

a I I (u, v;φ,ψ) + bI I (φ,ψ; p) =( f,φ) + (r,ψ),

bI I (u, v; q) − cI (p, q) =(g, q).
(22)

The additional term cI (p, q) corresponds to different versions of the Biot models [3].
The well-posedness of this saddle point problem can be proved with different choices of norms for W and Q.

We discuss some of these options in the rest of this section.

6.2. Augmented Lagrangian preconditioners

The stability of the three-field system (21) is closely related to the stability of the pairs u–p and v–p. In particular,
it is considered stable if u–p satisfies (19) and v–p satisfies

∀p ∈ (Kv)⊥, sup
v∈V

(∇ · v, p)
∥v∥H (div)

≳ ∥p∥0, (23)

where

Kv := {p ∈ Q|(∇ · v, p) = 0, ∀v ∈ V}.

(23) holds for V = HD(div,Ω ) and Q = L2(Ω ) and, in discrete cases, there are many stable pairs, such as
Raviart–Thomas elements [36] for V and piecewise polynomials for Q.

The augmented Lagrangian (AL) method [37,38] incorporates the constraint into the norm. The constraint here is

∇ · (u + v) = 0.

Therefore, it is natural to consider the following norms for the AL method.
We define the norms for spaces W and Q as follows:

∥v∥
2
V =(κv, v),

∥(u, v)∥2
W =∥u∥

2
U + ∥v∥

2
V + β∥PQ∇ · (u + v)∥2

0,

∥q∥
2
Q =(β−1q, q),

(24)

where ξ is the coefficient in bilinear form cI (·, ·), and β is an undetermined parameter.
To prove the well-posedness of (22), we just need to verify the assumptions of Theorem 1.
Given (19), we have ∀q ∈ (KI I )⊥,

sup
u,v

bI I (u, v; q)
∥(u, v)∥W

≥ sup
u

(∇ · u, q)
(∥u∥

2
U + β∥PQ∇ · u∥

2
0)1/2

≳ max{µ, λ, β}
−1/2

∥q∥0. (25)

For the case in which β ≥ max{µ, λ}, the right-hand side of (25) is equal to ∥q∥Q.
Given (23), we can prove another inequality: ∀q ∈ (KI I )⊥

sup
u,v

bI I (u, v; q)
∥(u, v)∥W

≥ sup
v

(∇ · v, q)
(∥v∥

2
V + β∥PQ∇ · v∥

2
0)1/2

≳ max{κ, β}
−1/2

∥q∥0. (26)
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Similarly, if we further assume that β ≥ κ , the right-hand side of (26) is equal to ∥q∥Q. Note that this approach is
used in [8], where the displacement u is set to be zero and the inf-sup condition of the v–p pair is assumed.

The boundedness of bI I (·, ·) is easy to verify due to the additional term β∥PQ∇ · (u + v)∥0 in the norm ∥ · ∥W:

bI I (u, v; q) ≤ ∥PQ∇ · (u + v)∥0∥q∥0 ≤ ∥(u, v)∥W∥q∥Q. (27)

The coercivity of a I I (·, ·) is straightforward to prove, as

∀(u, v) ∈ ZI I , a I I (u, v; u, v) ≡ ∥(u, v)∥2
W. (28)

Theorem 4. Assume β = min{max{µ, λ}, κ}, ξβ is uniformly bounded and the inf-sup conditions (19) and (23)
hold. Then the system (21) is uniformly well-posed with respect to parameters under the norms ∥ · ∥W and ∥ · ∥Q
defined in (24).

Proof. As KI I
= {0}, (13) is trivial to prove. Consider q for the inf-sup condition of bI I (·, ·). Due to β =

min{max{µ, λ}, κ}, the right-hand side of (25) or (26) is equal to ∥q∥Q. Therefore, the inf-sup condition of bI I (·, ·)
is proved.

As 0 < ξ ≲ β−1, we can prove that cI (p, q) ≲ ∥p∥Q∥q∥Q. Therefore, the assumptions of Theorem 1 hold. Then
the proof is finished by applying Theorem 1.

It is obvious that we only need to assume either (19) or (23) to prove the well-posedness of (22).

Corollary 1. Assume β = max{µ, λ}, ξβ is uniformly bounded, and that the inf-sup condition (19) holds. The
system (21) is uniformly well-posed with respect to parameters under the norms defined in (24).

Proof. The proof follows from (25), (28), (9), and Theorem 1.

Corollary 2. Assume that β = κ , ξβ is uniformly bounded, and the inf-sup condition (23) holds. The system (21)
is uniformly well-posed with respect to parameters under the norms defined in (24).

Proof. The proof follows from (26), (28), (9), and Theorem 1.

Remark 3. The assumption that both (19) and (23) hold results in a smaller parameter β than the cases where
only one of (19) and (23) holds.

Based on the well-posed formulation, we derive the corresponding optimal block diagonal preconditioner.

6.2.1. Matrix form
We introduce some additional matrix notation. Also, we introduce the FEM basis {vi } for V. Define the stiffness

matrices (Mv)i j = (vi , v j ), (Av)i j = (κvi , v j ), (C p)i j = cI (pi , p j ), and (Bv)i j = (∇ · vi , p j ).
Then the system matrix of the three-field formulation is

S I I I
=

⎛⎝ Au BT
u

Av BT
v

Bu Bv −C p

⎞⎠ .

The block preconditioner is

P I I I
1 =

⎛⎝ Au + β BT
u M−1

p Bu β BT
u M−1

p Bv

β BT
v M−1

p Bu Av + β BT
v M−1

p Bv

β−1 Mp + C p

⎞⎠−1

.

In order to be uniformly optimal with respect to the parameters, β is chosen as follows:

• β = max{µ, λ}, if (19) holds;
• β = κ , if (23) holds;
• β = min{max{µ, λ}, κ}, if both (19) and (23) hold.
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We note that in order to use P I I I
1 , we need to solve u, v together. In fact, we can use block triangle or block

diagonal preconditioners to solve the u, v coupled subproblem. Then we can further obtain some preconditioners
for the Biot model.

6.3. Block diagonal preconditioners

We can formulate block diagonal preconditioners based on (19). Define another pair of norms for spaces W
and Q:

∥(u, v)∥2
W =∥u∥

2
U + ∥v∥

2
V + β∥PQ∇ · v∥

2
0, ∥q∥

2
Q = β−1

∥q∥
2
0, (29)

where β = min{max {µ, λ} , κ}.

Theorem 5. Assume β = min{max{µ, λ}, κ}, ξβ is uniformly bounded and the inf-sup conditions (19) and (23)
hold. Then the system (21) is uniformly well-posed with respect to parameters under the norms ∥ · ∥W and ∥ · ∥Q
defined in (29).

Proof. We need to verify the assumptions of Theorem 1 in order to finish the proof. The inf-sup condition of
bI I (·, ·) follows from (25) or (26) and the assumption that β = min{max{µ, λ}, κ}. The boundedness of bI I (·, ·)
can be shown to be uniform:

bI I (u, v; p) ≤ (∥∇ · u∥0 + ∥∇ · v∥0)∥p∥0

≲∥u∥Uβ−1/2
∥p∥0 + ∥v∥Vβ−1/2

∥p∥0 ≲ ∥(u, v)∥W∥p∥Q.

In the kernel ZI I we have PQ∇ · u = −PQ∇ · v; therefore, the coercivity can be shown as ∀(u, v) ∈ ZI I

a I I (u, v; u, v) ≳ a I I (u, v; u, v) + β∥∇ · u∥
2
0

≥a I I (u, v; u, v) + β∥PQ∇ · v∥
2
0 = ∥(u, v)∥2

W.

The boundedness of a I I (·, ·) and the assumptions on cI (·, ·) are straightforward to verify.

Corollary 3. Assume that the inf-sup condition (19) holds, β = max {µ, λ} and ξβ is uniformly bounded. The
system (21) is uniformly well-posed with respect to parameters under the norms ∥ · ∥W and ∥ · ∥Q defined in (29).

Proof. The proof follows from Theorem 1 and the inf-sup condition of bI I (·, ·) follows from (25). And the
boundedness of bI I (·, ·) and coercivity of a I I (·, ·) can be obtained similarly to the proof of Theorem 5.

Corollary 4. Assume that β = κ , ξβ is uniformly bounded, and the inf-sup condition (23) holds. The system (21)
is uniformly well-posed with respect to parameters under the norms defined in (29).

Proof. The proof follows from Theorem 1 and the inf-sup condition of bI I (·, ·) follows from (26). And the
boundedness of bI I (·, ·) and coercivity of a I I (·, ·) can be obtained similarly to the proof of Theorem 5.

Remark 4. The assumption that both (19) and (23) hold results in a smaller parameter β than the cases where
only one of (19) and (23) holds.

6.3.1. Matrix form
The matrix form of the block diagonal preconditioner is as follows:

P I I I
2 =

⎛⎝ Au

Av + β BT
v M−1

p Bv

β−1 Mp + C p

⎞⎠−1

,

where β = min{max{µ, λ}, κ}.
The preconditioner P I I I

2 is closely related to the block diagonal preconditioner proposed in [16]. In fact, when
we choose spaces U and Q such that ∇ · U ⊂ Q and ∇ · V ⊂ Q, then the preconditioner P I I I

2 reduces to the
preconditioner proposed in [16] with very small ξ and some rescaling of the parameters.
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Table 1
Values of ξβ for various poroelastic materials.

ξβ ξβ

Ruhr sandstone 2.3836 Tennessee marble 12.1667
Charcoal granite 6.7635 Berea sandstone 2.3192
Westerly granite 2.5972 Weber sandstone 2.9235
Ohio sandstone 3.5965 Pecos sandstone 2.5322
Boise sandstone 2.4860

Table 2
Number of iterations of PMINRES with CG discretization for three-field scheme with κ = 107.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 28 35 27 36 51 43 34 49 51
1/32 33 47 37 37 55 53 33 51 55
1/64 35 54 47 36 57 57 33 51 57
1/128 36 56 55 36 58 60 33 51 59

0.49

1/16 29 40 29 30 42 37 28 37 35
1/32 30 42 35 30 42 39 28 37 37
1/64 30 44 39 30 42 39 26 37 37
1/128 29 44 39 29 42 41 26 37 37

0.495

1/16 29 40 31 29 37 37 26 35 33
1/32 29 42 35 28 38 37 26 35 35
1/64 28 42 37 28 38 39 26 35 35
1/128 28 42 39 28 38 39 26 35 35

0.499

1/16 27 39 33 26 35 33 23 30 31
1/32 28 40 35 26 35 35 23 30 33
1/644 27 40 35 26 35 35 23 30 33
1/128 27 40 37 26 35 35 23 30 33

Compared to the block diagonal preconditioner proposed in [19], the parameter β in H (div) block of the
preconditioner P I I I

2 will be smaller when κ is small. Namely the condition number of the H (div) problem
(v,ψ) + β(∇ · v, ∇ · ψ) will be smaller.

To obtain A−1
u for elasticity subproblem, we can use the multigrid method proposed in [39] for the discontinuous

Galerkin discretization which is robust with respect to the parameters µ and λ. In the previous approach, we added
β(∇ · v, ∇ · v) to the norm. This term causes some difficulty for the block solvers when β is large. There are lots
of studies on this topic, and we may resort to Hiptmair–Xu preconditioners [40]. For H (div) problems with highly
varying permeability, preconditioners based on additive Schur complement approximation proposed in [41] provide
an alternative. Here, we can avoid this term by adding a Laplace-like term on the pressure diagonal block. This is
also used in the mixed formulation for Poisson equations.

We define the norms for spaces W and Q:

∥(u, v)∥2
W = ∥u∥

2
U + ∥v∥

2
V, ∥q∥

2
Q = β−1

∥q∥
2
0 + ∥div∗

V q∥
2
V′ , (30)

where β = max{µ, λ} and div∗

V : Q ↦→ V′ is the adjoint operator of divV : V ↦→ Q′; i.e.,

⟨div∗

V q, v⟩ := ⟨q, divV v⟩, ∀v ∈ V, q ∈ Q.

Theorem 6. Assume that the inf-sup conditions (19) and (23) hold and β = max {µ, λ}. The system (21) is uniformly
well-posed with respect to parameters under the norms in (30).

Proof. We use Theorem 1 to finish the proof.
First, we consider the inf-sup condition of bI I (·, ·).
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Table 3
Number of iterations of PMINRES with CG discretization for three-field scheme with κ = 105.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 34 49 51 29 40 41 24 33 35
1/32 33 51 55 29 41 43 24 34 35
1/64 33 51 57 29 41 43 24 34 35
1/128 33 51 59 27 41 44 24 34 37

0.49

1/16 28 37 35 24 32 33 21 27 31
1/32 28 37 37 24 32 35 21 28 33
1/64 26 37 37 24 32 35 21 28 33
1/128 26 37 37 24 32 35 21 28 33

0.495

1/16 26 35 33 22 30 33 21 26 31
1/32 26 35 35 22 31 33 21 27 31
1/64 26 35 35 22 31 33 21 27 31
1/128 26 35 35 22 31 33 21 27 31

0.499

1/16 23 30 31 20 26 29 18 23 29
1/32 23 30 33 20 26 31 19 23 29
1/64 23 30 33 20 26 31 19 23 29
1/128 23 30 33 20 26 31 19 23 29

Table 4
Number of iterations of PMINRES with CG discretization for three-field scheme with κ = 103.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 24 33 35 21 28 33 20 25 31
1/32 24 34 35 21 28 33 20 25 31
1/64 24 34 35 21 28 33 20 25 31
1/128 24 34 37 21 28 33 20 25 31

0.49

1/16 21 27 31 19 24 29 17 22 27
1/32 21 28 33 19 24 31 17 22 29
1/64 21 28 33 19 24 31 17 22 29
1/128 21 28 33 19 24 31 17 22 29

0.495

1/16 21 26 31 19 23 29 17 21 27
1/32 21 27 31 19 23 29 17 21 27
1/64 21 27 31 19 23 29 17 21 27
1/128 21 27 31 19 23 29 17 21 27

0.499

1/16 18 23 29 16 21 27 15 19 25
1/32 19 23 29 16 21 27 15 19 25
1/64 19 23 29 16 21 27 15 19 25
1/128 19 23 29 16 21 27 15 19 25

Given that q ∈ Q, we have the following inequalities:

sup
(u,v)

bI I (u, v; q)
∥(u, v)∥W

≥ sup
u

(∇ · u, q)
∥u∥U

≳ sup
u

(∇ · u, q)
β1/2∥u∥1

≳ β−1/2
∥q∥0,

sup
(u,v)

bI I (u, v; q)
∥(u, v)∥W

≥ sup
v

(∇ · v, q)
∥v∥V

= ∥div∗

V q∥V′ .

Therefore, we have

sup
(u,v)

bI I (u, v; q)
∥(u, v)∥W

≳ ∥q∥Q.
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Table 5
Number of iterations of PMINRES with CG discretization for three-field scheme with κ = 10.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 20 25 31 18 22 29 17 20 27
1/32 20 25 31 18 22 29 17 20 27
1/64 20 25 31 18 22 29 17 20 27
1/128 20 25 31 18 22 29 18 20 27

0.49

1/16 17 22 27 16 19 27 14 17 25
1/32 17 22 29 16 20 27 14 18 25
1/64 17 22 29 16 20 27 14 17 25
1/128 17 22 29 16 20 27 14 17 25

0.495

1/16 17 21 27 16 19 25 14 17 23
1/32 17 21 27 16 19 25 14 17 23
1/64 17 21 27 16 19 25 14 17 23
1/128 17 21 27 16 19 25 14 17 23

0.499

1/16 15 19 25 13 17 23 13 16 21
1/32 15 19 25 13 17 23 13 16 21
1/64 15 19 25 13 17 23 13 16 21
1/128 15 19 25 13 17 23 13 16 21

Table 6
Number of iterations of PMINRES with CG discretization for three-field scheme with κ = 1.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 18 22 29 17 20 27 15 20 25
1/32 18 22 29 17 20 27 15 20 25
1/64 18 22 29 17 20 27 15 20 25
1/128 18 22 29 17 20 27 15 20 25

0.49

1/16 16 20 27 14 17 25 13 17 23
1/32 16 20 27 14 18 25 13 17 23
1/64 16 20 27 14 17 25 13 17 23
1/128 16 20 27 14 17 25 13 17 23

0.495

1/16 16 19 25 14 17 23 13 16 21
1/32 16 19 25 14 17 23 13 16 21
1/64 16 19 25 14 17 23 13 16 21
1/128 16 19 25 14 17 23 13 16 21

0.499

1/16 13 17 23 13 16 21 12 14 19
1/32 13 17 23 13 16 21 12 14 19
1/64 13 17 23 13 16 21 12 14 19
1/128 13 17 23 13 16 21 12 14 19

The boundedness of bI I (·, ·) can be shown to be uniform:

bI I (u, v; p) = (∇ · u, p) + (∇ · v, p)

≤∥u∥U
1

β1/2 ∥p∥0 + ∥div∗ p∥V′∥v∥V ≲ ∥(u, v)∥W∥p∥Q.

a I I (·, ·) is coercive on W due to the fact that

a I I (u, v; u, v) ≡ ∥(u, v)∥2
W, ∀(u, v) ∈ W.

The boundedness of a I I (·, ·) and the assumptions on cI (·, ·) are straightforward to verify.
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Table 7
Number of iterations of PMINRES with DG discretization for three-field scheme with κ = 107.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 12 34 27 16 49 43 15 49 51
1/32 14 46 37 16 55 53 15 51 51
1/64 16 54 49 16 57 55 15 51 53
1/128 16 58 55 16 58 57 15 51 57

0.49

1/16 10 40 29 10 41 37 16 37 35
1/32 11 42 35 10 42 39 16 37 37
1/64 12 44 39 10 42 41 16 37 37
1/128 12 44 39 12 42 41 16 37 37

0.495

1/16 10 40 31 10 37 37 16 35 35
1/32 10 42 35 10 37 37 16 35 35
1/64 12 42 37 10 38 39 16 35 35
1/128 12 42 39 11 38 39 16 35 35

0.499

1/16 9 38 33 15 35 33 17 30 31
1/32 10 39 35 15 35 35 17 30 33
1/64 11 40 37 15 35 35 17 30 33
1/128 11 40 37 15 35 35 17 30 33

6.3.2. Matrix form
The block preconditioner is as follows:

P I I I
3 =

⎛⎝ Au

Av

β−1 Mp + κ−1 Bv M−1
v BT

v + C p

⎞⎠−1

,

where β = max{µ, λ}.

6.4. Compare with Schur complement based preconditioners

In [3], block preconditioners are proposed for the discretized Biot model of the following form:⎛⎝ Au BT
u

Av BT
v

Bu Bv −C

⎞⎠ ⎛⎝ u
v
p

⎞⎠ =

⎛⎝ f
r
g

⎞⎠ , (31)

where C is the pressure mass matrix Mp with constant coefficient. Block preconditioners for the case C = Mp are
proposed:

• pressure Schur complement:

Pps =

⎛⎝ Au

Av

− C − Bv D−1
v BT

v

⎞⎠−1

,

where −C − Bv D−1
v BT

v is shown in [8] to be spectrally equivalent to the exact Schur complement −C −

Bu A−1
u BT

u − Bv A−1
v BT

v . This preconditioner is also used in [14].
• displacement–velocity Schur complement:

Puvs =

⎛⎝ Au + β BT
u C−1 Bu β BT

u C−1 Bv

β BT
v C−1 Bu Av + β BT

v C−1 Bv

− C

⎞⎠−1

.
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Table 8
Number of iterations of PMINRES with DG discretization for three-field scheme with κ = 105.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 15 49 51 17 39 41 18 32 35
1/32 15 51 51 17 39 43 18 33 37
1/64 15 51 53 17 40 43 18 33 37
1/128 15 51 59 17 41 45 18 33 37

0.49

1/16 16 37 35 17 32 33 17 27 31
1/32 16 37 37 17 32 35 17 28 33
1/64 16 37 37 17 32 35 17 28 33
1/128 16 37 37 17 32 35 17 28 33

0.495

1/16 16 35 35 17 29 33 17 26 31
1/32 16 35 35 17 31 33 17 27 31
1/64 16 35 35 17 31 33 17 27 31
1/128 16 35 35 17 31 33 17 27 31

0.499

1/16 17 30 31 16 26 31 16 23 29
1/32 17 30 33 17 26 31 16 23 29
1/64 17 30 33 17 26 31 16 23 29
1/128 17 30 33 17 26 31 16 23 29

Table 9
Number of iterations of PMINRES with DG discretization for three-field scheme with κ = 103.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 18 32 35 17 28 33 17 25 31
1/32 18 33 37 18 28 33 17 25 31
1/64 18 33 37 18 29 33 17 25 31
1/128 18 33 37 18 29 33 17 25 31

0.49

1/16 17 27 31 16 24 31 16 22 29
1/32 17 28 33 17 24 31 16 22 29
1/64 17 28 33 17 24 31 16 22 29
1/128 17 28 33 17 24 31 16 22 29

0.495

1/16 17 26 31 16 23 29 15 21 27
1/32 17 27 31 16 23 29 15 21 27
1/64 17 27 31 16 23 29 15 21 27
1/128 17 27 31 16 23 29 15 21 27

0.499

1/16 16 23 29 15 21 27 14 19 25
1/32 16 23 29 15 21 27 14 19 25
1/64 16 23 29 15 21 27 14 19 25
1/128 16 23 29 15 21 27 14 19 25

It is shown in [3] that exact solutions of the first 2-by-2 block of P I I I
1 , i.e.,(

Au + β BT
u M−1

p Bu β BT
u M−1

p Bv

β BT
v M−1

p Bu Av + β BT
v M−1

p Bv

)−1

, (32)

result in uniform preconditioners. However, effective iterative solvers must be used for the inner iterations. In [3],
two block preconditioners,(

Au

Av

)−1

and
(

Au + β BT
u M−1

p Bu

Av + β BT
v M−1

p Bv

)−1

, (33)

are used to precondition (32). The numerical tests in [3] show that the second preconditioner in (33) results in a
far fewer iterations for the inner iterative solvers than the first one. However, this approach introduces an additional
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Table 10
Number of iterations of PMINRES with DG discretization for three-field scheme with κ = 10.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4

1/16 17 25 31 16 22 29 15 20 27
1/32 17 25 31 16 22 29 16 20 27
1/64 17 25 31 16 22 29 16 20 27
1/128 17 25 31 18 22 29 16 20 27

0.49

1/16 16 22 29 15 20 27 14 17 25
1/32 16 22 29 15 20 27 14 18 25
1/64 16 22 29 15 20 27 14 18 25
1/128 16 22 29 15 20 27 14 18 25

0.495

1/16 15 21 27 15 19 25 14 17 23
1/32 15 21 27 15 19 25 14 17 23
1/64 15 21 27 15 19 25 14 17 23
1/128 15 21 27 15 19 25 14 17 23

0.499

1/16 14 19 25 13 16 23 12 16 21
1/32 14 19 25 13 17 23 13 16 21
1/64 14 19 25 13 17 23 13 16 21
1/128 14 19 25 13 17 23 13 16 21

loop of iterative solvers. In [35], (32) is directly approximated by the second preconditioner in (33) and incomplete
Cholesky factorization is used to further approximate the preconditioner.

The preconditioners, P I I I
2 and P I I I

3 , that we proposed are provably optimal and given their block diagonal
forms that are easy to implement. Further, P I I I

2 and P I I I
3 have another advantage: they apply to the case where

the diagonal block matrix C = 0 (i.e., the fluid storage coefficient S is zero), even though P I I I
2 is subject to the

constraint ξ ≤ β−1.

6.5. Values of ξβ for various poroelastic materials

Although some of the preconditioners we proposed depend on the assumption that ξβ is uniformly bounded, ξβ

is usually small in various poroelastic materials. In Table 1, we calculate the corresponding values of ξβ based on
the poroelastic constants in [27].

7. Numerical tests

In 2D case, we test the preconditioners using the poroelastic footing experiment (see [4]). The domain is
Ω = (−4, 4) × (−4, 4). Define

Γ1 = {(x, y) ∈ ∂Ω , |x | ≤ 0.8, y = 4}, Γ2 = {(x, y) ∈ ∂Ω , |x | > 0.8, y = 4}.

The boundary conditions are as follows:

(σe − pI)n = −104, v · n = 0, on Γ1,

(σe − pI)n = 0, p = 0, on Γ2,

u = 0, v · n = 0, on ∂Ω/(Γ1 ∪ Γ2).

We assume that the fluid storage coefficient is S = 0 and the other material parameters are varying in huge range.
We discretize the problem using FEniCS [42]. We show the robustness of the preconditioners with respect to

problem sizes and varying parameters. We discretize the problem on uniform triangular meshes. We use continuous
Galerkin (CG) method with P2 × RT1 × P0 and discontinuous Galerkin (DG) method with B DM1 × RT1 × P0 for
the three-field formulation [16]. Thus, the inf-sup conditions of bI I (·, ·) for both u–p and v–p are satisfied. We
present the number of iterations of preconditioned MINRES (PMINRES) with the preconditioners for three-field
formulation in Tables 2–6 (CG discretization) and Tables 7–11 (DG discretization), and elapsed solve times are
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Table 11
Number of iterations and elapsed solve times of PMINRES with DG discretization for three-field scheme with κ = 1.

E ν h P I I I
1 P I I I

2 P I I I
3

Iteration Time (s) Iteration Time (s) Iteration Time (s)

3 × 104

0.4

1/16 16 0.41 22 0.41 29 0.42
1/32 16 0.85 22 0.82 29 0.84
1/64 16 4.29 22 3.66 29 3.75
1/128 16 31.57 22 24.27 29 24.95

0.49

1/16 15 0.41 20 0.41 27 0.43
1/32 15 0.85 20 0.80 27 0.86
1/64 15 4.45 20 3.73 27 3.85
1/128 15 31.71 20 24.01 27 23.58

0.495

1/16 15 0.41 19 0.42 25 0.41
1/32 15 0.85 19 0.80 25. 0.85
1/64 15 4.27 19 3.67 25 3.73
1/128 15 30.71 19 23.97 25 23.60

0.499

1/16 13 0.41 16 0.43 23 0.42
1/32 13 0.85 17 0.81 23 0.83
1/64 13 4.16 17 3.57 23 3.65
1/128 13 31.26 17 23.80 23 24.98

3 × 105

0.4

1/16 15 0.41 20 0.43 27 0.43
1/32 16 0.85 20 0.83 27 0.85
1/64 16 4.23 20 3.70 27 3.86
1/128 16 31.10 20 24.96 27 24.37

0.49

1/16 14 0.42 17 0.42 25 0.43
1/32 14 0.87 18 0.82 25 0.85
1/64 14 4.19 18 3.68 25 3.82
1/128 14 33.73 18 23.96 25 24.41

0.495

1/16 14 0.42 17 0.42 23 0.43
1/32 14 0.88 17 0.82 23 0.83
1/64 14 4.23 17 3.58 23 3.72
1/128 14 30.36 17 24.70 23 24.22

0.499

1/16 12 0.42 16 0.42 21 0.42
1/32 13 0.87 16 0.82 21 0.82
1/64 13 4.17 16 3.56 21 3.61
1/128 13 30.95 16 24.72 21 23.50

3 × 106

0.4

1/16 15 0.42 19 0.41 25 0.42
1/32 15 0.84 19 0.82 25 0.85
1/64 15 4.22 20 3.64 25 3.65
1/128 15 30.80 20 24.80 25 23.83

0.49

1/16 13 0.41 16 0.42 23 0.42
1/32 13 0.86 17 0.80 23 0.83
1/64 13 4.16 17 3.69 23 3.72
1/128 13 30.07 17 24.81 23 24.04

0.495

1/16 13 0.41 16 0.41 21 0.41
1/32 13 0.86 16 0.81 23 0.83
1/64 13 4.22 16 3.61 23 3.64
1/128 13 30.62 16 23.65 23 23.66

0.499

1/16 12 0.42 13 0.42 19 0.42
1/32 12 0.83 14 0.81 19 0.82
1/64 12 4.12 14 3.68 19 3.54
1/128 12 29.79 14 24.39 19 23.78
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Table 12
Conditioned number of the unpreconditioned and preconditioned (with P I I I

i , i =

1, 2, 3) system matrices on coarsest mesh.

E = 3 × 104

ν N/A P I I I
1 P I I I

2 P I I I
3

0.2 1.15 × 106 1.27 3.67 4.33
0.49 5.37 × 106 1.05 4.00 4.29
0.495 1.08 × 107 1.05 2.67 4.31

E = 3 × 105

ν N/A P I I I
1 P I I I

2 P I I I
3

0.2 1.15 × 107 1.03 3.68 4.30
0.49 5.36 × 107 1.01 4.00 4.30
0.495 1.08 × 108 1.01 2.67 4.30

E = 3 × 106

ν N/A P I I I
1 P I I I

2 P I I I
3

0.2 1.15 × 108 1.00 3.68 4.30
0.49 5.36 × 108 1.00 4.00 4.30
0.495 1.08 × 109 1.00 2.67 4.30

Table 13
Number of iterations of P I I I

2 with CG and DG discretization for three-field scheme with ξ > β−1 (κ = 107).

ξ ν h E

CG DG

3 × 104 3 × 105 3 × 106 3 × 104 3 × 105 3 × 106

0.0001

0.4

1/16 16 26 52 16 26 51
1/32 48 86 73 24 42 82
1/64 32 55 107 32 57 111
1/128 36 63 122 36 65 128

0.499

1/16 44 45 39 43 45 39
1/32 69 70 59 70 72 60
1/64 92 92 75 95 96 84
1/128 103 106 89 109 110 96

0.001

0.4

1/16 12 21 40 12 21 40
1/32 18 35 70 18 37 71
1/64 29 62 120 30 64 125
1/128 45 96 184 46 101 198

0.499

1/16 33 32 24 33 32 26
1/32 55 53 40 58 57 42
1/64 94 85 63 101 96 71
1/128 139 127 94 158 150 110

0.1

0.4

1/16 7 11 19 7 11 19
1/32 10 19 30 10 19 31
1/64 17 33 50 18 35 55
1/128 30 59 87 33 66 102

0.499

1/16 10 4 2 11 4 2
1/32 12 4 2 15 4 2
1/64 15 4 2 23 5 2
1/128 20 4 2 36 5 2

included in the case with κ = 1 in Table 11. For each of the preconditioners we showed, the number of iterations
does not vary much with respect to the changing parameters and problem sizes. In addition, we also show the
condition numbers of the unpreconditioned and preconditioned system matrices on the coarsest mesh (16 × 16) in
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Table 14
Number of iterations of PMINRES with DG discretization for three-field scheme on three-dimensional domain with κ = 107.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4
1/8 13 35 27 16 53 45 16 55 63
1/16 15 47 37 18 61 61 16 57 75
1/32 17 59 53 18 64 77 16 59 99

0.49
1/8 11 38 27 12 42 43 16 39 45
1/16 12 44 37 12 44 51 16 39 57
1/32 12 46 47 12 44 69 16 39 77

0.495
1/8 11 38 31 11 40 43 16 37 43
1/16 12 42 39 12 40 51 16 35 57
1/32 12 44 47 12 40 69 16 35 75

0.499
1/8 11 38 37 15 35 41 17 33 41
1/16 11 40 45 15 35 53 17 32 53
1/32 11 40 61 15 35 71 17 32 69

Table 15
Number of iterations of PMINRES with DG discretization for three-field scheme on three-dimensional domain with κ = 1.

ν h E = 3 × 104 E = 3 × 105 E = 3 × 106

P I I I
1 P I I I

2 P I I I
3 P I I I

1 P I I I
2 P I I I

3 P I I I
1 P I I I

2 P I I I
3

0.4
1/8 16 22 35 16 20 33 15 18 31
1/16 16 22 45 16 20 41 15 19 39
1/32 16 22 61 16 20 55 15 19 51

0.49
1/8 15 20 33 14 18 31 14 17 29
1/16 15 20 41 14 18 39 14 17 35
1/32 15 20 55 14 18 51 14 17 45

0.495
1/8 15 19 31 14 17 29 13 16 27
1/16 15 19 39 14 17 35 13 16 33
1/32 15 19 53 14 17 49 13 16 43

0.499
1/8 14 17 29 13 16 27 12 14 23
1/16 14 17 35 13 16 33 12 14 29
1/32 14 17 45 13 16 43 12 14 35

Table 12. The condition numbers of the preconditioned systems are almost constant and close to 1. From Table 13,
the numerical results show that although we need ξβ to be uniform bounded in the theory, when ξβ is bigger, the
number of the iterations is getting much less, see the case ξ = 0.1 in Table 13.

In the following, we test numerical experiments on the three-dimensional domain, Ω = (−4, 4) × (−4, 4) ×

(−4, 4). Define

Γ1 = {(x, y, z) ∈ ∂Ω , |x | ≤ 0.8, |y| ≤ 0.8, z = 4},

Γ2 = {(x, y, z) ∈ ∂Ω , |x | > 0.8, |y| > 0.8, z = 4},

and the same boundary conditions as those in the two-dimensional problem are used. We present the numbers of
iterations for three-dimensional examples in Tables 14–15.

8. Concluding remarks

In this paper we study the well-posedness of the linear systems arising from discretized poroelasticity problems.
We formulate block preconditioner for the two-field Biot model and several preconditioners for the classical three-
field Biot model under the unified relationship framework between well-posedness and preconditioners. By the
unified theory, we show all the considered preconditioners are uniformly optimal with respect to material and
discretization parameters. The preconditioners have block diagonal forms and reduce the global preconditioning to
the local preconditioning. Numerical experiments have demonstrated the robustness of the preconditioners. Although
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we use the direct solvers for the analysis in this paper, we expect preconditioned iterative solvers for the local
problems (like multigrid preconditioned MINRES) will result in robust iterative solvers for the whole systems.
Although only block diagonal preconditioners are derived in this paper, these preconditioners can be also used to
develop block triangular preconditioners [31].
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