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1. Introduction. Multigrid methods are among the most efficient modern tech-
niques for solving large scale algebraic systems arising from the discretization of partial
differential equations. In this paper, we shall give a introduction to these methods
and their convergence properties by considering their applications to a model elliptic
boundary value problem of second order.

Multigrid methods have been most efficiently used in solving the linear algebraic
system arising from the finite element discretizations of partial differential equations.
The theory of the methods is an elegant combination of linear algebra, theory of finite
element approximation and of partial differential equations. In this paper, we shall
explore all these three aspects of the multigrid theory. We shall devote § 2, § 3 and
§ 4 to the technical materials for the theory of multigrid methods.

§ 2 is on the basic linear iterative methods and preconditioning concepts. Many
elementary iterative methods, such as Jacobi and (Gauss-Seidel iterations, are often
the major components in a multigrid procedure, and also a multigrid method is often
used in conjunction with a preconditioned conjugate gradient method. Therefore the
materials in § 2 are fundamental to our multigrid algorithms and theory.

§ 3 is on an algebraic framework of subspace correction method (following Xu [32])
that can be in general used for construction and analysis of linear iterative methods.
This framework will be a main technical tool in the analysis of multigrid methods in
§ 5.

The most technical materials in this paper are perhaps those in §4 for finite ele-
ment approximation theory. In this section, some basic materials in finite elements are
reviewed and some approximation results concerning multiple level of finite element
spaces are presented. Some of these results depend crucially on the regularity theory
for elliptic boundary value problems.

The core of this paper is §5 in which many major multigrid algorithms are intro-
duced and analyzed. An attempt is made to explain the basic ideas behind multigrid
methods and also to describe the implementation issues. But the major concern here
is to present the multigrid convergence theory. The multigrid methods are analyzed
with two different approaches. The first approach is the more traditional one which
makes a crucial use of regularity theory of partial differential equations. The second
approach is the subspace correction framework in §3.

The multigrid algorithms and their convergence analysis presented in §5 are only
for the case that the underlying multilevel spaces are nested in the sense that the
coarse spaces are subspaces of finer spaces. To give readers an idea on how multigrid
methods can be applied to more complicated situations, we devote §6 to a general
framework of nonnested multigrid methods which can be applied to cases like unstruc-
tured grids and nonconforming elements, and §7 to a special technical for construction
optimal multigrid preconditioning technique for unstrutured grid using the framework
of auxiliary space method.

Multigrid methods have been extensively studied in a vast literature by researchers
in many different areas, a short article like this can only give a glimpse of small part
of the whole subject. For further details, we refer to the tutorial book Briggs [15], re-
search monographes Hackbusch [21, 22], McCormick [24], Wesseling [30], Bramble [5],
review articles Xu [32] and Yserentant [37].

For convenience, following [32], the symbols <, 2 and = will be used in this

~) ~
paper. That 1 < y1,22 2 y» and x3 = y3, mean that z; < Cry1, 2 > cay2 and
csrs < yz < Csxs for some constants C', ¢, ¢z and C5 that are independent of mesh

parameters.



2. Tterative and Preconditioning Methods. Assume V is a finite dimen-
sional vector space. The goal of this section is to study iterative methods and pre-
conditioning techniques for solving the following kind of equation:

(2.1) Au=f.

Here A :V — V is an SPD linear operator over V and f € V is given.

2-a. Elementary linear iterative methods. A single step linear iterative
method which uses an old approximation, u®?, of the solution u of (2.1), to pro-
duce a new approximation, u™¢¥ usually consists of three steps:

1. Form r° = f — Au®'?;
2. Solve Ae = r°' approximately: é = Br
3. Update u?® = u°? 4 ¢,
where B is a linear operator on }V and can be thought of as an approximate inverse
of A.

As a result, we have the following iterative algorithm.

(2.2) Algorithm. Given u® €V,

old.
)

uF = uf + B(f - Ad®), k=0,1,2,--.

The core of the above iterate scheme is the operator B. Notice that if B = A~1,
after one iteration, u' is then the exact solution. B will be called an iterator of A.

We say that an iterative scheme like (2.2) converges if limy_. o, uy = u for any
ug € V. Assume that u and u® are solutions of (2.1) and (2.2) respectively, then

u—uf = (I— BA)k(u — ug).

Therefore the iterative scheme (2.2) converges iff p(I — BA) < 1.

(2.3) Symmetrization. Sometimes it is more desirable that the iterator B is sym-
metric. If B is not symmetric, there is a natural way to symmetrize it. Consider the
following iteration

uk+1/2 — uk+B(f_Auk)
uk+1 — uk+1/2+Bt(f_Auk+1/2)

where “t” denotes the adjoint operator with respect to (-,-). Eliminating the inter-
mediate u*t1/2 gives

u—uttt = (I - BtA)(I — BA)(u — uk)
or
(2.4) wftl = uf o B(f — Auk)

where, with “#” denoting the adjoint operator with respect to (-, )4,

(2.5) B=(I—(I-—BA)*(I—BA)A™' = B'+ B— B'AB
(2.6) I —BA= (I - BA*(I - BA).

4



Obviously B is symmetric and will be called the symmetrization of iterator B.
The following 1dentities obviously hold

(2.7) (BAv,v)4 = (2 — BA)v, BAv)4 YveEV.
and
(2.8) lollZ = I|(I = BAY||% = (BAv,v)a YuveEV.

A simple consequence of (2.8) is that
Amax(BA) < 1.

(2.9) Theorem. The following are equivalent:

1. The symmetrized scheme (2.4) is convergent.

2. The operator B given by (2.5) is SPD.

3. The matriz B~ 4+ B~ — A is SPD

4. There exists a constant wy € (0,2) such that any one of the following is satisfied
for any v € V:

(2.10) (BAv, BAv)a < wi(BAv,v)a;
(2.11) (Av,v) < wi(B™ o, v);

(2.12) (wi1 — )(Av,v) < (B~ + B~ = A)o, v);
(2.13) (2 — w1 )(Bv,v) < (Bv,v).

Furthermore, the scheme 2.2 converges if (and only if, when B is symmetric) its
symmetrized scheme 2.4 converges.
The above results can be proved easily by definition. We further notice that

(2.14) (2—w)B< B<2B.

(2.15) Richardson iterative methods. Richardson iteration is perhaps the simplest

iterative method which correspond to (2.2) with B = %I. Namely,
(2.16) Wt = b L (f— Aub), k=0,1,2, -,

p(A)

One can imagine that Richardson method is not very efficient method, but it is the-
oretically a very important one. One of the most important property of this method

is its “smoothing property” that will be discussed now.
Let A¢z = /\Zgﬁz with /\1 < /\2 S .. -/\n; (qj)h(ﬁ]) = 62’]’) and u — UO = Zaiqﬁi, then

U — uk = Z ai(l — w)\i//\h)k¢i.

For a fixed w € (0,2), it is clear that (1 —wA;/As)* converges to zero very fast as
k — oo if A; is close to Ap. This exactly means that the high frequency modes in the
error get damped out very quickly.



An iterative method (2.2) is said to be Richardson like if there exists an w € (0, 2)
such that

(2.17) (I = BA)w|ja < ||(T - piA)vHA Voe.
A

(2.18) Lemma. For the ilerative method (2.2), the followings are equivalent
1. The inequality (2.17) satisfies with w = Cy'.
2. (Copa)~Hv||? < (Bv,v) YveV.
3. (Copa)"HIAvl* < lolld — (1 = BAW|I YveV.
2-b. Jacobi and Gauss-Seidel Methods. Assume V = R" and A = (a;5) €
R™*™ is the usual SPD matrix. We write A = D— L —U with D being the diagonal of

A and —L and —U the lower and upper triangular part of A respectively. The easiest
approximate inverse of A are perhaps

B=D"' or B=(D-IL)""

As we shall see that these two choices of B result in the well-known Jacobi and
Gauss-Seidel methods. More generally, we have the following choice of B that result
in various different iterative methods:

w Richardson;
D! Jacobi;
(2.19) B=<{ wD™! Damped Jacobi;

(D— L)t Gauss-Seidel;
w(D—wL)™" SOR.

The symmetrization of the aforementioned Gauss-Seidel method is called the
symmetric Gauss-Seideil method.

(2.20) Theorem. Assume A is SPD. Then
Richardson method converges iff 0 < w < 2/p(A);
e Jacobi method converges iff 2D — A 1s SPD;
o Damped Jacobi method converges iff 0 < w < 2/p(D~'A);
o Gauss-Seidel method always converges;

e SOR method converges iff 0 < w < 2.

The proof of the above results follow directly from Theorem 2.9 by (2.19) to

compute B~? + B~! — A. For example, for SOR method, B~' + B! — A = 2_T°‘)D

2-c. Alternative formulations of iterative schemes. Assume that V and W
are two vector spaces and A € L(V,W). By convention, the matrix representation
of A with respect to a basis (¢1, -+, ¢,) of V and a basis (11, -+, ¢,,) of W is the
matrix A € Rmxn satisfying

(A1, -+, Adn) = (1 -, m) A,

Given any v € V, there exists a unique v = (v;) € R” such that v = Y | v;¢;.
The vector v can be regarded as the matrix representation of v, denoted by v = v.
By definition, we have, for any two operators A, B and a vector v

(2.21) AB=AB and Av= Av.
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Under the basis (¢r), we define the so-called mass matrix and stiffness matrix as
follows

M= ((6i,0)))nxn and A= ((Adi, $j))nxn,

respectively. It can be easily shown that
A= MA

and that M is the matrix representation of the operator defined by

n

(2.22) Rv=> (v,¢:)¢s, YveEV.

i=1

Under a given basis (¢), the equation (2.1) can be transformed to an algebraic
system

(2.23) Ap=n.
Similar to (2.2), a linear iterative method for (2.23) can be written as
(224) Nk+1zﬂk+6(77_Aﬂk): k:0;1;2>>
where B € R™*" is an iterator of the matrix A.
(2.25) Proposition. Assume that @ = p, f=pand n=MPB. Then u is the solution
of (2.1) if and only if p ts the solution of (2.23). The linear iterations (2.2) and (2.24)
are equivalent if and only if B = BM. In this case k(BA) = x(BA).
In the following, we shall call B the algebraic representation of B.

Using the property of the operator defined by (2.22), we can show the following
simple result.

(2.26) Proposition. The scheme (2.2) represents the Richardson iteration for the
equation (2.23) if B is given by

n

Bv :wp(-A)ilz(va¢i)¢ia Vve V,

i=1

and it represents the damped Jacobi iteration if B is given by

Bv=w Z(A¢i,¢i)_1(v, bi)pi, YveEV.

i=1

2-d. Preconditioned conjugate gradient method. The well-known conju-
gate gradient method is the basis of all the preconditioning techniques to be studied
in this paper. The preconditioned conjugate gradient (PCG) method can be viewed
as a conjugate gradient method applied to the preconditioned system:

(2.27) BAu = Bf.

Here B : V +— V is another SPD operator and known as a preconditioner for A. Note
that BA is symmetric with respect to the inner product (B~1.,-). One version of this
algorithm is as follows: Given ug; ro = f — Aug; po = Bro; Fork=1,2,.. .,

Up = Up—1 + OkPr—1, Tk = Th—1 — 0 Apr_1, Pr = Bri + Bepr-1,
ar = (Bri—1,m5-1)/(Apr—1, pr—1), Bx = (Bri,re)/(Bri—1,76-1).
7



It 1s well-known that

(2.28) = e < 2(%&21)% ~uolla,

which implies that PCG converges faster with smaller condition number x(BA).

Observing the formulae in the PCG method and the convergence estimate (2.28),
one sees that the efficiency of a PCG method depends on two main factors: the action
of B and the size of kK(BA). Hence, a good preconditioner should have the properties
that the action of B is relatively easy to compute and that x(BA) is relatively small
(at least smaller than k(A)).

3. Tterative methods by subspace correction. Following Xu (1992) (see also
Bramble-Pasciak-Wang-Xu [8, 7]), a general framework of constructing linear iterative
methods and/or preconditioners can be obtained by the concept of space decomposi-
tion and subspace correction. This framework will be presented here from a purely
algebraic point of view. Some simple examples are given for illustration and more
important applications are given in the later sections for multigrid methods. This
framework can also be applied directly to domain decomposition methods.

The presentation here more or less follows Xu [32]. The main modification is
that the subspace solvers here may not be symmetric. For related topics, we refer to

Bramble [5].

3-a. Preliminaries. A decomposition of a vector space V consists of a number
of subspaces V; C V (for 0 < i < J) such that

(3.1) V=> Vi

This means that, for each v € V, there exist v; € V; (0 < ¢ < J) such that v = ZZ»J:(] v;.
This representation of v may not be unique in general, namely (3.1) is not necessarily
a direct sum.

For each ¢, we define Q;, P; : V — V; and A; : V; — V; by

(3.2) (Qiu,v;) = (u,v5), (Piu,vi)a = (u,v;)a, u€V, v €V,
and
(33) (Azula 'l)i) = (Aula Ui)a U, Vg S VZ

Q; and F; are both orthogonal projections and A; is the restriction of A on V; and is
SPD. It follows from the definition that

(3.4) AP = QA

This identity is of fundamental importance and will be used frequently in this chapter.
A consequence of it is that, if u is the solution of (2.1), then

with w; = Pju and f; = @; f. This equation may be regarded as the restriction of (2.1)
to VZ



We note that the solution u; of (3.5) is the best approximation of the solution
© (2.1) in the subspace V; in the sense that

J(w) = minJ(0), with J(2) = %(Av, o) = (f, 0)

and

[Ju = willa = min [Ju —v]|a.

The subspace equation (3.5) will be in general solved approximately. To describe
this, we introduce, for each ¢, another non-singular operator R; : V; — V; that rep-
resents an approximate inverse of A; in certain sense. Thus an approximate solution
of (3.5) may be given by u; = R; f;.

(3.6) Example. Consider the space ¥V = R" and the simplest decomposition:

n

R™ = Zspan{ei},

i=1
where € is the i-th column of the identity matrix. For a SPD matrix A = (a;;) € R"*"
A =ai,  Qiy = yic',
where y; the 1-th component of y € R™.

3-b. Basic algorithms. From the viewpoint of subspace correction, most linear
iterative methods can be classified into two major algorithms, namely the parallel
subspace correction (PSC) method and the successive subspace correction method

(SSC).

PSC: Parallel subspace correction. This type of algorithm is similar to Jacobi
method. The idea is to correct the residue equation on each subspace in parallel.

Let u°? be a given approximation of the solution u of (2.1). The accuracy of this
approximation can be measured by the residual: 7°'% = f — Ay, If °'¢ = 0 or very
small, we are done. Otherwise, we consider the residual equation:

Ae = pold

Obviously u = u®'¥+e is the solution of (2.1). Instead we solve the restricted equation
to each subspace V;

Aje; = Qir'?.

It should be helpful to note that the solution e; is the best possible correction u°? in

the subspace V; in the sense that
1
J(u' 4 e;) = mivn J( 4 e), with J(v) = §(Av,v) —(f,v)
eEV;
and

[Ju — (u? + €i)[[a = min|Ju — (u + €)]|a.
eEV;

9



As we are only seeking for a correction, we only need to solve this equation
approximately using the subspace solver R; described earlier

éz’ = RZ'QZ'T’Old.
An update of the approximation of u is obtained by

J

e — uold + E éz

7=0
which can be written as
e — uold + B(f _ AuOld),

where
J

(3.7) B=> RiQ:.
i=0

We have therefore

(3.8) Algorithm. Given uy € V, apply the iterative scheme (2.2) with B given
in (3.7).

(3.9) Example. With V = R” and the decomposition given by 3-a, the correspond-
ing (3.8) is just the Jacobi iterative method.

It is well-known that the Jacobi method is not convergent for all SPD problems
(see Theorem 2.20, hence (3.8) is not always convergent. However the preconditioner
obtained from this algorithm is of great importance. We note that The operator B
given by (3.7) is SPD if each R; : V; — V; is SPD.

(3.10) Algorithm. Apply the CG method to equation (2.1), with B defined by (3.7)
as a preconditioner.

(3.11) Example. The preconditioner B corresponding to 3-a is

B = diag(aj}', a5, ant)

r'nn

which is the well-known diagonal preconditioner for the SPD matrix A.

SSC: Successive subspace correction. This type of algorithm is similar to the
Gauss-Seidel method.
To improve the PSC method that makes simultaneous correction, we here make

the correction in one subspace at a time by using the most updated approximation of

u. More precisely, starting from v~! = u°'? and correcting its residue in V, gives

v’ = v+ RoQo(f — Avh).
By correcting the new approximation v! in the next space V;, we get
vl =0 + RiQ(f — AvY).
Proceeding this way successively for all V; leads to

(3.12) Algorithm. Given u® € V.
10



for k =0,1,... tdl convergence

v<—uk

fori=0:J v—v+ RQi(f— Av) endfor
ub !l — .
endfor

(3.13) Example. Corresponding to decomposition in Example 3-a, the Algorithm 3.12
is the Gauss-Seidel iteration.

(3.14) Example. More generally, decompose R™ as

J
R" = E span{el’,el’H,~~~,el’+1_1},
i=0

where 1 = lp < l; < -+ < lj41 = n+ 1. Then (3.8), (3.10) and (3.12) are the
block Jacobi method, block diagonal preconditioner and block Gauss-Seidel method
respectively.

Let T; = R;Q; A. By (3.4), T; = R;A; P;. Note that 7; : V — V; is symmetric with
respect to (-, )4 and nonnegative and that T; = P; if R; = Ai_l.

If w is the exact solution of (2.1), then f = Au. Let v’ be the i — th iterate (with
v0 = u*) from Algorithm 3.12, we have by definition

u— vt = (T - T)(u—"), i=0,---,J.

A successive application of this identity yields

(3.15) u—ubt! :EJ(U—Uk),
where
(3.16) E;y=(I-TH)(I—-Ty_1)---(I—-T1)(I - Tp).

(3.17) Remark. It is interesting to look at the operator Ej in the special case that
R, = wAi_l for all 7. The corresponding SSC iteration is a generalization of the classic
SOR method. In this case, we have

Ej=({I—-wPy)(I—wPj_1)--(I —wP)(I —whP).

One trivial fact is that Ej is invertible when w # 1. Following an argument by
Nicolaides [28] for the SOR method, let us take a look at the special case w = 2.
Since, obviously, (I —2P;)~! = I — 2P, for each i, we conclude that EJ_1 = I where
* is the adjoint with respect to the inner product (-,-),. This means that Ej is
an orthogonal operator and, in particular, [|[Es||a = 1. As a consequence, the SSC
iteration can not converge when w = 2. In fact, as we shall see in Proposition 3.42
below, in this special case, that the SSC method converges if and only if 0 < w < 2.
The symmetrization of Algorithm (3.12) can also be implemented as follows.

(3.18) Algorithm. Given u® €V, v — u°

for k =0,1,... tedl convergence
fori=0:Jandi=J:-1:0 v—v+ RQ;(f— Av) endfor
endfor

11



The advantage of the symmetrized algorithm is that it can be used as a precondi-
tioner. In fact, (3.18) can be formulated in the form of (2.2) with operator B defined
as follows: For f € V, let Bf = u! with u! obtained by (3.18) applied to (2.1) with
u’ = 0.

(3.19) Colorization and parallelization of SSC iteration. Associated with a given
partition (3.1), a coloring of the set J = {0,1,2,..., J} is a disjoint decomposition:
Je
J=Jaw
t=1

such that
PP, =0 forany ¢,jeN(@),i#j(1<t<],).

We say that ¢, j have the same color if they both belong to some J(t).
The important property of the coloring is that the SSC iteration can be carried
out in parallel in each color.

(3.20) Algorithm (CorLoreD SSC). Given u’ € V, v «— u°

for k =0,1,... tdl convergence
fort=1:J. v—v+ ZiEJ(t) R;Qi(f — Av)  endfor
endfor

We note that the terms under the sum in the above algorithm can be evaluated
in parallel (for each ¢, namely within the same color).

3-c. Convergence theory. The purpose of this section is to establish an ab-
stract theory for algorithms described in previous sections.

In view of Theorem 2.9, it suffices to study (3.10) and (3.12). Two fundamental
theorems will be presented.

For the preconditioner (3.10), we need to estimate the condition number of

J
T=BA=>Y_T,
i=0
where B is defined by (3.7) and T; = R, A; P;.

It is interesting to note the following special case:

J
BA=Y P if Ri=A""
=0

For (3.12), we need to establish the contraction property: there exists a constant
0 < 6 < 1 such that

i E
IEs]|la <6 with ||EJ||AISupw’
vey  ||vlla

where Ej is given by (3.16). Applying this estimate to (3.15) yields |Ju — u¥[|4 <
&F[Ju — u®|| 4.

Important parameters. The convergence theory here is to be built upon several
parameters associated with the space decomposition and subspace solvers.

12



Parameter wi. The first constant, named wq, is the smallest constant satisfying
(3.21) (Tiv, Tiv)a <wi(Tiv,v)a YoeV,0<i< J
or equivalently
(3.22) (vi, Ajvi) < wi (R Mo, v) Yo eV,0<i< ]

We assume that R; is chosen in such a way that wy is well-defined. If all R; are SPD,
then wy is obviously well defined and in fact
wi = max p(Ridi) = max p(T)
The constant wy 1s, in most cases, very easy to estimate and its bounded-ness
often comes as an assumption. For example, while all the subspace solvers are exact,

namely R; = Ai_l, then w; = 1. As we shall see late, the convergence of an SSC
method is assured if the following condition holds:

wy < 2.

This condition is equivalent to saying that the symmetrized schemes for all R; are
convergent schemes (see Theorem 2.9) and in particular the iterative schemes given
by all R; are convergent schemes.

Parameter Ky and Ky. The parameter Ky to be introduced now plays the most
crucial role in most applications and it is also most difficult to estimate in applications.
It measures the correlation between space decomposition and the choice of subspace
solvers. We define

Ko = sup inf E (Ri_lvi,vi).
llolla=1vi€Vs,y vi=v

and

Kq= sup inf E (Ri_lvi,vi).
llolla=1vi€Vs,y vi=v

In other words, for any v € V, there exists a decomposition v = Z;'Izo v; for v; € V;
such that

(3.23) Z(Ri_lvi,vi) < Ko(Av, v).

(3.24) Lemma. Assume, for any v € V, there is a decomposition v = Z;]:O v with
v; € V; satisfying

J

(3.25) > (vi,vi)a < Co(v,v)a,

7=0
then

_ C . . =
Ko < TO, with @y = min Amin(R;4;)
i 0<i<J
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and, if all R; are SPD,

C . .
Ky < =% with and wo = min_ Apin(R;4;).
wo 0<i<J

The above lemma is most useful in domain decomposition applications. A good
upper bound of Kj relies on a good lower bound of wg, which means that each subspace
solver R; should resolve the whole range of the spectrum of A;. In another word, the
subspace problems should be very well solved or preconditioned.

The constant Cy in (3.25) only depends on the partition (decomposition) of the
space and it is sometimes called partition constant.

(3.26) Lemma. Assume, for any v € V, there is a decomposition v = Z;]:O v; with
v; € V; satisfying

Z,O(Ai)(vi, vi) < Co(v,v) 4,

then then

Gy . _
g < — Nr— . . .
Ko < e with &y Oglilgnl(/\mm(Rz)p(Al))’

and, if all R; are SPD,

. Co . . .
(o < =2 = i (Ri)p(A)).
Ky < %, with  and W OISHZ'ISHJ(/\mm(RZ)p(Al))

The above lemma is most useful in multigrid applications. A good upper bound
of Ky relies on a good lower bound of wg, which means that each subspace solver R;
only needs to resolve the “upper” range of the spectrum of A;. In another word, each
subspace solver R; should be spectrally equivalent to (p(A4;))7*.

Parameter Ky and K. This parameter measures the interaction among subspaces
together with the subspaces solvers.

If each R; is SPD, we define ¢;; € (0, 1], for j < 4,
(3.27) ey = p(PiT;Pj)Jwi and € =5, €= 1.
And we define &; € (0, 1], for j < 4,
(3.28) 6?]» = p(PjTin) and €; = €5, €;=1,
where with R; being the symmetrization of R; (see § 2-a),
(3.29) T = R;iA; Pi.
Note that, for each ¢ > j, ¢; and €; are the smallest numbers satisfying
(Tivj,vi)a < wicl;(vy,v)a, (Trvj,v5)a < vy, v)a Vo €V,
(3.30) Lemma. If each R; is SPD, then

(3.31) (Tiu, Tjv)a < wigj(Tiu,u)3(Tiv,v)3 YVu,veV;
14



Proof. Without loss of generality, we may assume that ¢ > j. It follows from
Cauchy-Schwarz inequality that

(Tow, Tyo)a < mu,mi(m»v Tj0)3
< Vwie(Tiu, u) (Tjv, T; )i
< wlqj(TZ-u,u) (Tjv, v)i

O

(3.32) Remark. Clearly ¢;; < 1 and, ¢; = 0 if P,P; = 0. If ¢;; < 1, the inequal-
ity (3.31) is often known as the strengthened Cauchy-Schwarz inequality.

(3.33) Definition.
Ki= min +max €
L7 geciogy <|j0| ;C ”)
and
Ki{ = min J +max €
=iy (1 )

Roughly speaking, K is bounded if the matrix (¢;;) is sparse except for a few rows
and columns.

(3.34) Lemma. The parameter K1 admits the following estimates:
1. K1 <J+1.

n
2. K1 <14 p((€ij)ij=10) <1+ 1ré1Za<xJ 162']'.
iz
3. Ifei; SA1 or ey <AL for somey € (0,1), then K < ﬁ or K1 < ﬁ
(3.35) Lemma.

) ) J 12, J 1/2
> (Tiug, Tyvi)a < (Ky — 1)<Z(Tiuiaui)A) (Z Tjvj, Tjvj)a )
1>] i=0 j=0

If each R; is SPD, then
J 1/2 , J 1/2
> (Tiug, Tyvj)a < wi(Ky — 1)(Z<Tiui,ui),4) (Z Tjvj, vj)a )
>7 =0 ji=0
If each R; is SPD, then for any S C {0:J} x {0:J},
1/2

J 12, J
> (Thui, Tjvj)a < w1 K (Z(Tiui;ui)A> (Z(Tﬂ}j, vj)A)
=0

ij€ES i=0

15



Convergence theory. With the parameters wy, Ky and K introduced above,
the convergence estimates for PSC and SSC methods can be neatly presented. The
analysis for PSC preconditioner is relatively easy whereas the analysis for SSC itera-
tion is less straightforward.

We first give a lower bound for the spectrum of the PSC preconditioner.
(3.36) Lemma. Assume that all R; are SPD. The PSC precondilioner B given
by (3.7) satisfies

Amin(BA) = Kjt

Proof. If v = Y"7_, v; is a decomposition that satisfies (3.23), then

J J

(v,v)4 = Z(Ui’ v)a = Z(Ui, Piv) 4,

=0 =0

and by the Cauchy-Schwarz inequality

J J J
> (vi, Pv)a =Y (i, AiPiv) < Z(Ri_lviavi)%(RiAiPiv; v)i
1=0 1=0 i=0

J

< OO v v (O (Tw,v)a)t < V/Eollolla(Tv, 0}

1=0 =0
Consequently
lel3 < Ko(Tv,0)a

This implies that Apin(BA) > K L.
Now for v = Z{:D v; with v; = T;7~ v, we have

J -1 -1 —1
_(RTT T
[{0 S max ZZ:O( 2 2 5 U,y 1 U)
vev lIvl1%

= maxi(T_lv’v)A— : -1
 wev (v,v)a = (Amin(BA))

The desired estimate then follows. 0O
(3.37) Theorem. Assume all R; are SPDE. The PSC preconditioner B given by (3.7)

satisfies
Amin(BA) = K5' and  Amax(BA) <wi Ky,
and
k(BA) <wi1 KoK;.
And i view of Lemmas 3.24 and 3.20,
Kk(BA) < Z—;com, Kk(BA) < z—;éom,

16



Proof. By Lemma 3.35,

J
1Tl = 3 (Tro, Tyo)a < Ka(To, 004 < KilTollallvlla,
7,5=0

which implies that A,.x(BA) < K;. O
To present our next theorem, let us first prove a very simple but important lemma.
(3.38) Lemma. Denote F_1 =1 and for 0 <i < J,

E;=(I—T)(I—Tiey)- (I —T0)(I —Tp).

Then

(3.39) I—E;=Y TE;_,
§=0

and for any v €V,
J —

(3.40) lolli = 1Esollh = D (TiEimiv, Eimiv)a
1=0

where T; is given by (3.29).
Furthermore if each R; is symmetric then

J
(3.41) llelld = 1 Esolld > (2= w1) Y (TiEim1v, Eimiv)a

i=0

Proof. The identity (3.39) follows immediately from the trivial identity F;_; —
E; = T,E;_;. Similar to (2.8) and (2.7), we have

|Ei—1v]|% — (| Eiv]|4 = (21 = T B0, TiEi—1v)a = (TiEi—1v, Ei_1v) 4.

Summing up these inequalities with respect to ¢ gives (3.40). The estimate (3.41)
follows by combining (3.40) and (2.14). O

Again let us take a look at the special case that R; = wA;l for each i. In this
case, we have

J

lolld = 1Esolld = w(2 —w) Y NP Lol
=0
This identity implies immediately that a necessary condition for the convergence for
the related SSS method is that 0 < w < 2. In fact, like in SOR method, it is not
hard to see that this condition is also sufficient for the convergence (see Corollary 3.49

below). Thus, we have the following simple generalization of a classic result for the

SOR method (see also Remark 3-b).

(3.42) Proposition. The SSC method with R; = wA;l for each v converges if and
only if 0 < wy < 2.

17



(3.43) Lemma. Assume that wq < 2. If each R; is SPD, then

J J
(3.44) Y (T, v)a < (1+F1)* Y (TiEiav, Eiqv)a Vv eV,

=0 i=0
and in general

J

J 2
(3.45) S (Tiv,v)a < <1+ 2“1 (K, —1)) S (T Ejorv, Ej—1v)a

— W
i=0 1 j=0

Proof. By (3.39)

(Tiv,v)a = (Tiv,Eioqv)a + (Tiv, (I — Ei—1)v)a
i—1
= (Tiv, E;_1v)a + Z(EU,I}E]'—W)A-

§=0

Applying the Cauchy-Schwarz inequality gives,

NI

> (Tiv, Bi_yv)a < (Z(Tiv,v)A) (Z(TiEi_lv,EZ»_w)A) :

=0 =0 =0
and, by Lemma 3.35,

J i-1

Y > (L 1jEj-1v)a

1=0 j=0

o=

J ER A
<wi(Ky—1) (Z(ﬂv, v)A) (T} Ej—1v, Bj_1v)a
=0 j=0
Combining these three formulae then leads to (3.44) and hence completes the proof
for (3.47).
With arguments similar to the above (essentially by replacing T; by T; in the
above proof), it is easy to obtain that

1/2
; /

J /2 /g
(G0, 0)a < (zmv,v)A) S By, By 10
2=0

i=0 j=0
J 3
> (LB 10, Ti Ej_1v)a

j=0

1
2

+(K; — 1) (Z(EU,U)A>

After canceling the common factor and using the following inequalities (see (2.11)
and (2.10)):

(I}w’ w) < (2 - wl)_l(Tjw’ w)’ (Tjw’ﬂw) < w1(2 - wl)_l(ﬂw’w)’

The estimate (3.45) then follows easily. O
18



Now we are in a position to present our second fundamental theorem.
(3.46) Theorem. Assume that wy < 2. If each R; is SPD, then the iterator Ej
(given by (3.16)) for the Algorithm 3.12 satisfies
2 — Wi

- 2 < o .
(3.47) I£s]1a <1 Ko(1+wi (K —1))2’

and, in general,
2—w
(3.48) 1B <1- 1

I{ro(w/Q — Wi + \/(.01(1171 — 1))2
Proof. The estimate in (3.47) is obviously equivalent to
Ko(1+ K1)
9 _
Estimate (3.47) then follows by combining (3.44) with (3.40) and (2.11).
The second estimate (3.48) then follows by combining (3.45) with the fact that
Amin(32; T;) = K5'' (similar to Lemma 3.36). O

As a direct consequence of the above theorem, we have the following simple result.

ol < (llld = 11Esv]2) Yvev.

(3.49) Corollary. A sufficient condition for the convergence of the SSC method is
that

(3.50) wy < 2
The condition (3.50) is also necessary in some sense, see Proposition 3.42.

(3.51) Remark. Note that the convergence estimate in Theorem 3.46 is indepen-
dent of the order of how (3.12) is proceeded. Namely, if we shuffle the order in the
decomposition (3.1), the corresponding estimate in (3.46) remains unchanged.

(3.52) Theorem. Under the assumptions in Lemma 3.2/,
K(BA) < LOyK,
wo

and
(2 — wl)wo

1—
Co(l + (.01([(1 — 1))2

if each R; is SPD

IEsI[% < .
wo

1= Co(v2 = w1 + @1(K1 — 1))?

otherwise.

(3.53) Theorem. Under the assumptions in Lemma 3.26,
H(BA) S (t)—léo Kl
@wo
and
1 dl
Co(1+wi(K; —1))?

if each R; 1s SPD
17514 <
(2 — wl)(;)o

- Cov/2— w1 + /w1 (Ky — 1))

otherwise.
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3-d. Matrix representations of PSC and SSC methods. The PSC and SSC
have been presented above in terms of projections and operators in abstract vector
spaces. We shall now translate all these algorithms into explicit algebraic forms by
using the simple techniques in § 2-c.

For each k, let 7, € R™*™ be the matrix representation of the natural inclusion
I : Vi — V; To derive the algebraic representation of the preconditioner (3.7), we
rewrite it in a slightly different form

J
B =Y I RQy.

k=0

Applying (2.21) and the easily verifiable identity Qr = M;ll,tc./\/l gives

J J
B = Z[kRka = sz(RkMk)(Mglz;tﬂM) = BM.

k=0 k=0

Here R}, is the algebraic representation of R; and

J
(3.54) B=) TLiR:Ij.
k=0

Different choices of Ry, yield the following three main different preconditioners:

J
Zp(Ak)_lIkI,i Richardson;
k=0
J
B = ZIka_lLi Jacobi;
k=0
J
szgkz,@ Gauss-Seidel.
k=0

Here Gy, = (Dy — Uy,) " Dy (Dy, — L1)™Y, A = Dy — L — Uy, Dy is the diagonal of
A, —Lp and —Uy, are, respectively, the lower and upper triangular parts of Ay.
Following (2.25), we get

(3.55) Proposition. The PSC preconditioner for the stiffness mairiz A is given
by (3.54) and k(BA) = k(BA).
Similarly, we can derive the algebraic representation of (3.12) for solving (2.23).

(3.56) Algorithm. ° € R” is given. Assume that u* € R™ is obtained. Then pF+!
15 defined by

pE¥iT = kG- ‘|‘L’Ri1¢t(77—¢4/ik+(i_l>”)
fori=0:J.

4. Finite element approximations. In the following sections, we shall intro-
duce the multigrid methods. Our presentations will be confined on a second order
elliptic model problem with the linear finite element discretization.

This section is devoted to some basic properties of finite element spaces that will
be used for the analysis of multigrid algorithms.
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4-a. A model problem and finite element discretization. We consider the
boundary-value problem:

V.aVU = F inQ,

(4.1) U 0 on 09,

where Q C R is a polyhedral domain and a is a smooth function (or piecewise smooth)
on Q with a positive lower bound.

Let H(£2) be the standard Sobolev space consisting of square integrable functions
with square integrable (weak) derivatives of first order, and H((£2) the subspace of
H'(Q) consisting of functions that vanish on Q. Then U € H}(R) is the solution
of (4.1) if and only if
(4.2) a(U,x) = (F,x) Vx € Hs(%),

where
a(U,X):/ aVU - Vydez, (F,X):/ Fxdz.
Q Q

Introduce the fractional order Sobolev spaces
H™7(Q)(m >0,0< 0 < 1)
defined by the completion of smooth functions in the following norm:

lellmto = (lellrmcay + lelmeni)

where

2 _ |Dv(z) — D*v(y)|*
|U|m+a,ﬂ = | lz: /ﬂ/ﬂ o — g|at2e dx dy.
a|l=m

It is well-known that there exists a constant a € (0, 1] such that
(4.3) U1 +a < CIF a1,

for the solution U of (4.2), where C'is a constant depending on the domain € and the
coefficient a(z).

Assume that €2 is triangulated with © = U;7;, where 7;’s are nonoverlapping
simplexes of size h, with h € (0, 1] and quasi-uniform. i.e. there exist constants Cj
and € not depending on h such that each simplex 7; is contained in (contains) a ball

of radius Cyh (respectively Cgh). Define
V=1{veHjQ):v|, eP:i(n), VYVl

where P; is the space of linear polynomials.
We shall now mention some properties of the finite element space. For any v € V,
we have

(4.4) lvllooe < AYPlvllLoc), p > 1,
(4.5) e < A7,

o 1
(4.6) loliten < A7\l o €(0,5),
(4.7) lollso < h7%(lvllon s,tef0, 1], t<s,
(4.8) vllzee) < calPvllmi(a,
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where ¢1(h) = 1,¢a(h) = |logh|% and cq(h) = R for d > 3. The inverse
inequalities (4.4) and (4.5) can be found, for example, in Ciarlet [19] and a proof of
the discrete Sobolev inequality (4.8) can be found in Bramble and Xu [11]. A proof
of (4.6) and (4.7) may be found in Bramble, Pasciak and Xu [10] and Xu [31].

(4.9) Theorem. Assume that Py : H} () — V is the Galerkin projection with respect
to a(-,-), then
(4.10) 1T = Poullioa S B¥llully ¥ u € HYD),

~

and
(1) W= Payulls S B lullie, V€ HY(R)OH'(@), 0< s <a

where « is as in (4.3).
Defining the L? projection @y : L*(£2) — V by

(Qnv,x) = (v,x), VveL*(Q),x€eV,
we have

(4.12) o = @noll + PllQnvl o) < Chllvllmia)-

This estimate is well-know, we refer to [31, 11] for a rigorous proof and related results.

By interpolation, we have (for ¢ € (0, 3))

(4.13) 1Quollg=() S lollae(a) Yo e Hy(Q).
and
(4.14) o = Qrvlliza S A0l Y v € Ho(Q).

The finite element approximation to the solution of (4.1) is the function u € V
satisfying

(4.15) a(u,v) = (F,v) Vv V.
Define a linear operator A : V — V by
(4.16) (Au,v) = a(u,v), w,veEV.

The equation (4.15) is then equivalent to (2.1) with f = @, F. The space V has a
natural (nodal) basis {¢;}7_, (n = dim)) satisfying

(Z)i(l‘z):&“ Vi l=1,...,n,

where {z; : | = 1,...,n} is the set of all interior nodal points of V. By means of
these nodal basis functions, the solution of (4.15) is reduced to solving an algebraic

system (2.23) with A = ((aV ¢, V¢))nxn and 5 = ((f, ¢i)nx1)-

It is well-known that
(417) A2 < vlAr <RS2 and AYrP S viMe S AP Ve e R

Hence k(A) <h™? and k(M) < 1.
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Fia. 1. A typical multilevel grids

4-b. Finite element spaces on multiple levels. This section is to study the
interaction between finite element spaces with different scales. We assume that Q has
been triangulated with a nested sequence of quasi-uniform triangulations 7, = {7} }
of size h for k = 0,...,5 where the quasi-uniformity constants are independent of
k. These triangulations should be nested in the sense that any triangle 7._, can be
written as a union of triangles of {7} } (see Figure 1. We further assume that there is
a constant 1 > 1, independent of k, such that

Associated with each 7, a finite element space My C HE(Q2) can be defined. One
has

(4.18) MiCMsC...CMpC...CMjy.
For each k, we define the interpolant Iy : C(Q) — My by
(Iyu)(z) =u(z) YaeN.

Here N}, is the set of all nodes in 7.
Let Qg, Py : HY(Q) — M, be the L2 and H*! projection defined by

(4.19)(Qpu, vr) = (u,vg), (VPu,Vug) = (Vu,Vug) Vué Hé(Q), vy € M.

(4.20) Lemma. Let Ry, be any one of I, Qr or Pr. Then
1. RiR; = Rin;.
2. (RZ' — Ri_l)(R]' — R]'_l) =0fi#j.
3 (R —Rr_1)? =Ry — Rie_1=(I — Rp_1)Rg.

(4.21) Lemma. Im:Tk
(4.22) Ntk — Tea)ol? + Blels S catbB2 eI, v eV,

where cq(k) = 1,J —k and 209=DU=F) for d = 1,2 and d > 3, respectively.

4-c. Regularity and approximation property. Associated with each My,
we define, as in (3.3), Ay : My — Mj. The following result is instrumental in
multigrid analysis.

(4.23) Theorem. Assume « is as in (4.3). Then

(1.24) A = Peoww) € OF Al  Au ) = ¥ u € M.
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Proof. Let u € My. Applying Cauchy-Schwarz’s inequality and the following
norm equivalence (See Bank and Dupont [2])

14 %0l = llolle ¥ HA(Q) N H(Q) s €[0,1].
we deduce that

lta 1-a
(A® w A7 (1= Peo)u)

A((I = Pr_)u,u) <
1to l-o
< A ullllAe® (1= Peoa)ull
14
< A7 wllll( = Pe—r)ulfi—a-
By Holder’s inequality,
(4.25) 14,7 ull < (A, w)' [ Apul**) 7

Note that A; <

~

Theorem 4.9. 0O

h,;2, the theorem the follows by combining above inequalities with

4-d. Strengthened Cauchy-Schwarz inequalities. These types of inequali-
ties were used as assumptions in Section 4 (see (3.31)). Here we shall establish them
for multilevel spaces.

(4.26) Lemma. Let i > j; then

a(u,v) Sy TR ullalloll V€ Miv e M

Here, we recall, that v € (0,1) is a constant such that hy = v%.
Proof. Given K € 7;, it follows from Green’s identity that

/aVu~Vv /Va~Vuv—|—/ a%v
K K ok On

< ullexllell + [V ullo.oxllvllo o5
< Nl glloll + (25 ullo ) (B2 ello k)
< (hiha) T 2|V ulok llvllo,x
< ARVl kllollo k-

A repeated applications of Cauchy-Schwarz inequality yield

a(u,v) = Z /KaVu-va/'yi_jhj_l Z [P SEERS)

KeT; KeT;
5 2
S TR 2 llina || 2 Il | = A el
KeT; KeT;

O

The inequality in the previous lemmais a generalization of the strengthen Cauchy
inequality for hierarchical basis functions in Yserentant [36]. Our proof is similar in
nature to that in [36], but appears to be a little shorter and more straightforward.

24



(4.27) Lemma. Let V; = (I; — Li_1)V or V; = (Qi — Qi—1)V; then

(4.28) a(u, v) <Al allv]la Yue Vi, veV;.

Proof. By (4.12), we have
llof| < Rillvlla Vv eV

The result then follows directly from Lemma 4.26. O
(4.29) Lemma. Assume that Ty = Ry Ag P, and that Ry : My, — My satisfies

[REAR]? S AL (Apv, ) Vv e My,

where A\ = p(Ay). Then, for 0 <i,5 <J

li—3l
2

1 1
(Tiu, Tjv)a S (Tiu,u)3(Tjo,0); Yu,veV.

Proof. If i < j, an application of Lemma 4.26 yields
(wi, Tyv)a 97 k7wl all Tyl
By the assumption on Ry,
1501l = 1R; A Pyoll S AillA7 Pyoll < hyllolla.
Consequently
(ui, Liv)a < 7j_i||ui||A||v||A Yu, € Vi,veV.

The second inequality follows from the Cauchy-Schwarz inequality and the in-
equality just proved:

1 1
(Tiu, ij)A < (T]’U’ v)j\(T]TZul TZU)Z

i—i L =i 1 1
S v (T v) i Tulla 977 (Tiu, w3 (Tv,v) 3

~

4-e. An equivalent norm using multigrid splitting. If nested multilevel
finite element spaces M} are allowed to get refined in an infinite way, namely & — oo,
then the Sobolev space H} can be characterized by these finite element spaces in a
very elegant way. We shall give such a characterization.

(4.30) Theorem. For all v € HL(Q),

lollf = D 110Qk = Qe—)vllf = D A I(Qk — Qe—n)oll.
k=0

k=0
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Proof. Let Qp = Qr — Qp_1 and v; = (P; — Pi_1)v. It follows that

lQruilli < hEZQHQkUiH%_a (by inverse inequality (4.7))
< b ellii. (by (4.13))
<ORFPRIuilT (by (4.14)).

Note that v = . v; Let i A j = min(¢, j), we have

SOI@k — Qeor)oll?

k=0

= Z Z Vékvi,Vkaj) (since Qv =01if i < k)
k=04 j=k

o0 A

= Z Vkai, V@kvj) (change the order of sum: Fubini theorem)
i,j=1k=

o0

3 Zh 2R R o1 os || < Z hins he S (vl [lvj [l

',j 1k=0 ij=1

< Z ™ eilhllosll < ZHUZHI = [Jllf.

1,j=1

N

To prove the other inequality, we use the strengthened Cauchy-Schwarz inequality
and obtain (Lemma 4.26)

lollf = > (VQiv, VQjv) < Z Qi@ vll < EHQMM
i,j=1 i,j=1 i=1

d
(4.31) Theorem. For all v € HL(Q),

lolf = D A I = Qu—)ol.
k=0

Proof. By previous theorem, we obviously have

D0 = Qem)oll > Y kP I@Qk = Qu—n)oll 2 ol

k=0 k=0

The proof for the other direction of inequality is identical to that of the previous
theorem except using Qr = I — Qr_1 instead of Qr — Qr_1. O

(4.32) Theorem. For all v € H(Q)(—1 < s < 1),

loll2 = D 110Qk = Qe—)wll? = D A 1@k = Qe—1)o]l-
k=0

k=0
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Proof. Set B =3 77, h,;Z(Qk — Qr—1). We then have ||v]|> = (B"v,v) and, by
previous theorem, ||v]|? = (Bwv,v). An application of operator interpolation then gives
that ||v||? = (B®v,v) which implies the desired result. O

(4.33) Remark. The above theorem is also valid for —3/2 < s < 3/2.

(4.34) Remark. A relevant interesting identity is as follows:

[oll? = Y hEllAR Bl Vv e Hi(Q).
k=0

5. Multigrid methods. This section is devoted to multigrid methods and their
convergence properties. The following topics will be studied: classic multigrid iterative
methods, BPX preconditioners, hierarchical basis methods, methods for locally refined
meshes and full multigrid principle.

5-a. Analysis for smoothers. The most crucial step in developing a multigrid
solver is the design of a relaxation scheme. A relaxation scheme is also the most
problem-dependent part of a multigrid solver as most other parts (such as prolongation
and restriction operators) are usually quite standard. The role of relaxation is not to
reduce the overall error, but to smooth it out (namely damp out the non-smooth or
high frequency components) so that it can be well approximated by functions on a
coarser grid.

The smoother will be analyzed by three approaches in this section. The first
approach is through numerical experiments, which would give an intuitive idea on
the numerical behavior of a smoother. The second approach is Brandt’s local mode
analysis. This approach, using local Fourier analysis, can give a good insight on
the role of a smoother. The third approach is to build technical machineries for the
convergence analysis of multigrid methods.

A model problem and some numerical examples. Consider the Poisson
equation with homogeneous Dirichlet condition on unit square discretized with uni-
form triangulation, the discretized equation can be expressed as

(5.1) dug; — (i1 + Uiy F o1 +uij-1) = by, 1<4,7<n

The damped Jacobi and Gauss-Seidel methods are among the most popular relaxation
schemes for this problem. The damped Jacobi (or Richardson) iteration can be written
as

(5.2) Atij = w(Wigrj + %i1j + W1 + Ui j-1) + by

where t;; denote the new value of u while #;; denote the old value of u, and the
(point) Gauss-Seidel iteration (with lexigraphical order on nodal points, from left to
right and bottom to top):

(5.3) A = (Uigrj + Uimyj + Ui jy1 + Ui j1) + b; 5.

The Gauss-Seidel method has a good smoothing property. Let us illustrate this
by a simple numerical example. Consider the equation (5.1) with an initial residual
u — u® shown on the left plot of Figure 2. The initial residual apparently contains a
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Fia. 2. Residual after 0, 2 and 100 iterations, respectively, with 961 unknowns.

Fia. 3. Convergence history of Gauss-Seidel method within 50 iterations

lot of oscillations. The middle plot in Figure 2 is the residual after 2 Gauss-Seidel
iterations. As we see the error components are smoothed out very quickly with only
two Gauss-Seidel iterations although the global errors are still very large. The right
plot in Figure 2 1s the residual after one hundred iterations and as we see the error is
still quite big.

Basic ideas in a multigrid strategy. The above numerical examples show that, high
frequency errors, which involve local variations in the solution, are well annihilated
by simple relaxation methods such as Gauss-Seidel iterations. Low-frequency or more
global errors are much more insensitive to the application of simple relaxation meth-
ods. In fact, as shown in Figure 3, the convergence rate of the Gauss-Seidel iteration
consists of a rather rapid initial residual reduction phase, which gradually develops
into a much slower residual reduction phase, corresponding to a situation where all
high-frequency errors have been damped down and low-frequency errors dominate.
A multigrid methodology capitalizes on the this rapid initial high-frequency errors
associated with an initial solution on the fine grid, using a simple relaxation scheme
such as Gauss-Seidel iteration. Therefore, the solution is transfered to a coarse grid.
On this grid, the low-frequency errors of the fine grid manifest themselves as high fre-
quency errors, and are thus damped out efficiently using the same relaxation scheme.
The coarse grid corrections computed in this manner are interpolated back to the
fine grid in order to update the solution. This procedure can be applied recursively
on a sequence of coarser and coarser grids, where each grid-level is responsible for
eliminating a particular frequency bandwidth of errors.

Multigrid strategies may be applied to any existing relaxation technique. The
success of the overall solution strategy depends on a close matching between the
bandwidth of errors which can be efficiently smoothed on a given grid using the
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particular chosen relaxation strategy, with a careful construction of a sequence of
coarse grids, in order to represent the entire error frequency range.

Brandt’s local mode analysis. The local mode analysis of Brandt [13] is a
general effective tool to analyze and predict the performance of a multigrid solver
and in particular the performance of a smoother. This method is based on the fact
that a relaxation process is often a local process in which the information propagates
just few mesh-sizes per sweep. Therefore, one can assume the problem to be in an
unbounded domain, with constant (frozen) coefficients, in which case the algebraic
error can be expanded in terms of Fourier series.

The local mode analysis for smoother can in fact be applied in a rigorous fashion
to the model problem discussed in previous section. Let us first recall the discrete
Fourier theory. For clarity, we confine our discussion in two dimensional case. The
discrete Fourier transform theory says that every discrete function u : I, — IR, with
I, ={(,7) : 0 <i,j < n}, can be written as

uij = Y et (0), i (0) =R i = V2T 0= (61,0).

heo,
where
cyp = ﬁ (k%;ln ug 1Yr,1(—0).
and
On = (Zo(k,) —m<kI<mtp)
n—+1

where p=1,m = (n+1)/2 for odd n and p =0, m =n/2+ 1 for even n.
We now first use the discrete Fourier transform to analyze the damped Jacobi
method. Let & ; = u;; — ;5 and & ; = u; ; — 14; ;. It is easy to see that

W, _ _ _ _
(5.4) €ij = €5 — 5 (467 = (Uirj + Uimrj + Ui s + Ui j-1))-
We write
(5.5) Gj= > torhij(0)
6co,
and
(5.6) €5 = Z 591/)2'7]'(9).
feo,

Substituting the above expressions into (5.4) and comparing the coefficients of each
¥i;(0), we obtain that

cos 01 + cos 05

(5.7) A(f) =1 —w(l — 2 ).
where
(5.8) A(9) = @



is called the amplification factor of the local mode #; ;(9).
The smoothing factor introduced by Brandt is the following quantity

(5.9) p=sup{|A(0)|,7/2 < |0p| < 7,k =1,2}.

Roughly speaking, the smoothing factor p is the maximal amplification factor cor-
responding to those high frequency local modes that oscillate within 2h range (and
hence can not be resolved by coarse grid of size 2h).

For the damped Jacobi method, it is easy to see that

p=max{|l - 2w|, |l —w/2|,|1 - 3w/2|}.
The optimal w that minimizes the smoothing factor is
w=4/5, p=23/5.

For w = 1 we have p = 1. This means that the undamped Jacobi method for this
model problem, although convergent as an iterative method by itself, should not be
used as a smoother.

We next exam the smoothing property of the Gauss-Seidel iteration. Unlike
the Jacobi method, Gauss-Seidel method depends on the ordering of the unknown.
The most natural ordering is perhaps the lexicographic order which was used in the
numerical examples given earlier and the corresponding Gauss-Seidel method reads

- 1 - _ .
(5.10) €ij = 7 (Gib1,j T E-1j + Ggar+ o)

Again using the Fourier transform (5.5) and (5.6), we obtain the local amplifica-
tion factor as follows:

6191 + 6191

4— =81 _ =ity

A(6) =

It is elementary to see that
p = |A(7/2,cos™1(4/5))| = 1/2.

This means that Gauss-Seidel method is a better smoother than the damped Jacobi
method.

A more interesting ordering for the Gauss-Seidel method is the so-called red-black
ordering. In this particular example, we say two grid points belong to the same color
(see (3 — b)) if and only then they are not neighbors (in either horizontal or vertical
direction). It is easy to see that the uniform grid in our example can be grouped into
two colors, often called red color and black color. The red-black ordering is to first
order all the nodes in one color and then order the other points in another color. (The
actual ordering within the same color is not crucial).

The smoothing factor for the Gauss-Seidel method with red-black ordering can
not be obtained as easily as the lexigraphical ordering, but it can indeed be proved
that

This means that the Gauss-Seidel method with red-black ordering is a better smoother
than the one with the lexigraphical ordering. Furthermore red-black Gauss-Seidel has
much better parallel feature (see (3 —b)).
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General smoother analysis. We shall now develop some technical results con-
cerning the smoothing property of the Gauss-Seidel method. We choose to study
Gauss-Seidel method since it is one of the better smoothers for our model problems
and also it is less obvious to analyse. The analysis for other smoother is relatively
simple (see the analysis for Richardson in (2.16)).

(5.11) Lemma. For the stiffness matrie A=D — L —-U

(D = L)ell2 = h*2[lell. VEeRY.

Proof. Because of the sparsity, it is trivial to prove that
(D — L)Ell> < h2 (€]

Now 1t follows that

h*9(&,€)

N

(A+D)E,¢€)
<P = L)E]l=[I€]l2-

[NRI

LD,6) <

~—

This completes the proof. 0O
The following result is an operator interpretation of the algebraic result given in
Lemma5.11, which means that the Gauss-Seidel is basically like Richardson iteration.

(5.12) Lemma. Assume that R :V — V represents the iterator for symmetric Gauss-
Seudel iteration. Then

Rz h? =\t

~

Proof. By definition, the matrix representation of R is
R=(D—-U)"'DD - L)"'M.
Given v € V| let v = v, then it is easy to see that
(Rv,v) = [[D3(D = £)~" M]3
Thus it 1s equivalent to showing that
IDHD = )7 Mull3 = (M),

Making a change of variable ¢ = (D — £)™!Muv and using the fact that M~! = h™9,
the above relation can be reduced to

1D = L)EII3 = h*=*(D€, &) = A2 I¢]I3,
which was given by Lemma 5.11 O

(5.13) Lemma. For the stiffness matric A=D —L—U

(D—L),€) VEERY,
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where ko is the mazimal number of nonzero row entries of A.
If R:V —V represents the iterator for Gauss-Seidel iteration. Then

2
1+ ko

(Av,v) < (R™'v,v) YveV,.

Proof. 1t is easy to see that the desired estimate is equivalent to the following:
(AE,€) < ko(DE,E) VEERY

which can be obtained by a simple of application of Cauchy-Schwarz inequality. O

5-b. A basic multigrid cycle: backslash (\) cycle. Although, as we shall
see, multigrid methods have many variants, there is one particular multigrid algorithm
which can be viewed a basic multigrid cycle. This algorithm is sometimes called the
backslash (\) cycle (we shall explain below why this algorithm is given this name).

We shall first present this method from a more classic point of view. This more
classic approach makes it easier to introduce many different kinds of classic multi-
grid methods and also make it possible to use more classic approach to analyze the
convergence of multigrid methods.

A multigrid process can be viewed as defining a sequence of operators By, : My —
My which are approximate inverse of Ay, in the sense that || — By Ag||a is bounded
away from 1. A typical way of defining such a sequence of operators is the following
backslash cycle multigrid procedure.

(5.14) Algorithm. For k = 0, define By = Aal. Assume that By_1 : Mp_1 —
My 1 1s defined. We shall now define By : My — My which 1s an tterator for the
equation of the form

Apv =g.
1. Fine grid smoothing: For v =0 and 1 =1,2,---,m
vl = o7t 4 Ry (g — Agv'TY)

2. Coarse grid correction: ej_1 € Mp_1 is the approzimate solution of the resid-
ual equation Ap_1e = Qr_1(9 — Av™) by the iterator By_q:

er—1 = Br_1Qr-1(g — Av"™).
Define

Brg=v" 4+ er_1.

After the first step, the residual v — v™ is small on high frequencies. In another
word, v — v™ is smoother (see the middle plot in Figure 2) and hence it can be very
well approximated by a coarse space Mj_1. The second step in the above algorithm
plays role of correcting the low frequencies by the coarser space Mp_; and the coarse
grid solver Bp_; given by induction.

With the above defined Bj, we may consider the following simple iteration

(5.15) ut T = 4 By (f — Adb)
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There are many different ways to make use of By, which will be discussed late.
Before we now study its convergence, we now discuss briefly the algebraic version
of the above algorithm.
Let ®F = (¢% .-+ (/)Zk) be the nodal basis vector for the space My, we define the

so-called prolongation matrix I}j"’l € R™r+1XMk a5 follows

(5.16) PF = QLTI

(5.17) Algorithm (MATRIX VERSION). Let By = Ag'. Assume that By 1 € R™s-1X7k-1
1s defined; then forn € R™ By € R™*"r s defined as follows:
1. Fine grid smoothing: For v° =0 and [=1,2,---,m

=it + Ri(n —Akul_l)

2. Coarse grid correction: ¢,_1 € R™~1 s the approzimate solution of the residual
equation Ap_,e = (Illj_l)t(n — Av™) by using By_q

k-1 = Beo1(Zi_y)'(n — Aer™).
Define

Brn=v" —|—Z,f_15k,1.

The above algorithm is given in recurrence. But it can also be easily implemented
in a non-recursive fashion. For such type of implementation, we refer to Algorithm 5.24

5-c. A convergence analysis using full elliptic regularity. With the as-
sumption of full elliptic regularity (namely o = 1 in (4.3), see also Theorem 4.23), a
very sharp convergence estimate can be obtained in a very simple and elegant fashion.

We shall assume that the smoothers Rj are SPD and satisfies

Co

(5.18) o

(v,v) < (Rpv,v) < (A;lv,v) Vove M.

We would like to remark that the above assumptions on Rj can be much weakened
and, for example, Rj, do not need to by symmetric (in this case, assumptions need to
be made on the symmetrization of Ry, see, e.g., § 5-e).

If the regularity estimate (4.3) holds with o = 1, then there exists a positive
constant ¢; independent of mesh parameters such that (see Theorem 4.23)

(5.19) (I = Pe_1)v]|h < erdy | Age]]? Vv € M.

The next technical result shows that any function smoothened by local relaxation
can be well approximated by a coarser grid.
(5.20) Lemma.

C1

17 = Pe-) K vll3 < gl = 157" 0]1%)-

mcy
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Proof.
1 = Pec) K ollh < exay AR i ol
= (RyAR KMo, Ay KM0) = (I — Kp)K2™ v, v) 4
Cp Cp

€1 ~m
ool = I 01

<

The proof is completed by using the following elementary inequality:

1 m
21 I— KK, v — (I — Kp)KI
(5.21) (( (k)K" v, v 2 Z: () Kv,v) 4

1
< K™0||%).
< - ol

(lellé — |

a
(5.22) Theorem. For the Algorithm 5.1}, we have

C1

I — B A _—
Il rARIS < CT——

1<k<J.

Proof. By definition of Algorithm 5.14, we have
I—ByAr = (I = Pro1Br_1Aks—1)(I — ReAg)™
and, thus, for all v € My
1(1 = BrAr)vlla
= T = Pec) K0l + (T = Bici At) Pt K20 .

Let 6 = ¢1/(2meo + ¢1). We shall prove the above estimate by induction. First
of all it is obviously true for £ = 0. Assume it holds for £ — 1. In the case of k, we
have from the above identity that

I = Bedg)elly < N = Pec) Kol + 8| ooy Kol
< O—&WI—H:Okai+ﬂﬂkwﬁ
< 0—65 OHM—MI Foll) + Sl K1
< élfuflA-

5-d. V-cycle and W-cycle. Two important variants of the above backslash
cycle are the so-called V-cycle and W-cycle.

A V-cycle algorithm is obtained from the backslash cycle by performing more
smoothings after the coarse grid corrections. Such an algorithm, roughly speaking, is
like a backslash (\) cycle plus a slash (/) (a reversed backslash) cycle. The detailed
algorithm is given as follows.

(5.23) Algorithm. For k = 0, define By = A;'. Assume that Br_y : My_1 —
M1 1s defined. We shall now define By : My — My which 1s an tterator for the
equation of the form

Apv=yg.

34



1. pre-smoothing: For W =0 andl = 1,2,---,m
Ul — Ul_l —|—Rk(g—Akvl_1)

2. Coarse grid correction: ep_1 € My_1 is the approzimate solution of the resid-
ual equation Ap_1e = Qr_1(9 — Av™) by the iterator By_1:

er—1 = Br-1Qr-1(g — Av™).
3. post-smoothing: For vt =v™ 4 e;_1 and l=m +2,2,---,2m
vl =" Ry (g — Apv'T)

A non-recursive implementation. The recursive formulation of the above algo-
rithm makes it a little less straightforward to code sometimes. A non-recursive version
of the algorithm is given below in terms of matrices and vectors.

(5.24) Algorithm (V-CYCLE COMPUTATION OF B§).

B =B
forl=17:1, forl=2:1],
o = Rib, Bior = (T )8 — Aren); ar =R+ I} au-1);
endfor endfor
BB =qQy.

The reason why this algorithm is called V-cycle is quite clear with the above
implementation. The algorithm starts on the finest level and traverses all the grids,
one at a time, until it reaches the coarsest grid. Then it traverses all the grids until
it reaches the finest level.

It 1s easy to see that the operators Bj defined by the above V-cycle algorithm
satisfy

I— ByA, = (I— BN A" (1= B\ A)

where B,(C\) correspond the operator defined by the backslash cycle Algorithm 5.14
and * is the adjoint operator with respect to the A—inner product. Consequently,

11— BeAglla = [|T — B Ayl

This means that the convergence of the V-cycle is a consequence of the convergence
of backslash cycle.

The W-cycle, roughly speaking, is like a V-cycle plus another V-cycle. In a V-
cycle iteration, the coarse grid correction is only performed once, while in a W-cycle,
the coarse grid correction is performed twice.

(5.25) Algorithm. For k = 0, define By = Aal. Assume that By_1 : Mp_1 —
My 1 1s defined. We shall now define By : My — My which 1s an iterator for the
equation of the form

Arv=g.
1. pre-smoothing: For v° =0 and l =1,2,---,m

Ul — vl—l +Rk(g—Akvl_1)
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2. Coarse grid correction: ep_1 € My_1 is the approzimate solution of the
residual equation Ap_1e = Qr_1(g — Av™) by applying iterator By_, twice,
er—1 = w?, with

w = w T+ B (Qr-1(g — Av™) — Ap_w’ T, j=0,1,2, w®=0.
3. post-smoothing: For vt =v™ 4 ep_y and [=m+2,2,---,2m
vl =o't Ry(g — Apv'Th).

Again it is also easy to see that the convergence of the W-cycle is an easy conse-
quence of the convergence of V-cycle. But it is often the case that W-cycle is easier
to analyze. We shall now give an optimal estimate for the convergence of W-cycle
based on the elliptic regularity assumption (4.3) (which implies that (4.24) holds).

(5.26) Theorem. Under the elliptic regularity assumption (4.3) for some o € (0, 1],
the W-cycle iteration admits the following estimate
M
5.27 I— BpAglli € ————
(.27 I By < M

for some constant M that is independent of mesh parameters.

Proof. Let § = ﬁ The estimate (5.27) will be proved by induction. As there

is nothing to prove for £ = 0, we assume that (5.27) is valid for £ — 1. By definition,
the following recurrence relation holds for any v € M.

A((I — BkAk)b, U) = A((I — Pk_l)lj, ’D) =+ A((I — Bk—lAk—l)Pk—lﬁ, Pk_l’lj)

where © = K'v.

I(T = B Aol

< I = Pp_1)dl|4 + 6||Pr_19])3  (by induction)
< (1= = Peo)B])% + 61011
< (1= ) (e ARl Bl + 82 flalh  (by (4.24))
Cc1 ~ * 2(1l—a -
<=8 [l — 1] I+ 7l (b 20
0]

Note that ||3[|%/||v[|4 € [0, 1], the desired estimate then easily follows if we can prove
the following elementary inequality

C1

(5.28) (1—6%) [2 (1t)]at1_“—|—62§6 t€[0,1].

mcy

By Holder inequality, for any n > 0, we have
(1 =)t < an(l—t) 4 (1 — a)ps-7.

Thus (5.28) is a consequence of the following inequality

-3

The choice of 7 is made to minimize the above left hand side, name to equalize the
coefficients of 1 —¢ and ¢. The proof may be completed with some more elementary
manipulations by choosing sufficient large M in the expression of §. 0O

C1

mco]aon](l — )+ (1 =)y +6Ht <6 telo1].
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5-e. Subspace correction interpretation. We shall now discuss the multigrid
method from the subspace correction point of view. Let My (k= 0,1, --,J) be the
multilevel finite element spaces defined as in the preceding section. Againlet V = My,
but set Vi, = My_j. In this case, the decomposition (3.1) is trivial.

We observe that, with the above choice of subspaces Vi, there are redundant
overlappings in the decomposition (3.1). The point is that these overlappings can be
used advantageously in the choice of the subspace solvers in a simple fashion. Roughly
speaking, the subspace solvers need only to take care of those “non-overlapped parts”
(which correspond to the so-called high frequencies). As we know, the methods like
Gauss-Seidel method discussed earlier just satisfies such requirements.

With the above ingredients, the successive subspace correction method Algo-
rithm (3.12) can be stated as follows.

(5.29) Algorithm. Given u° € V.

for k =0,1,... tll convergence
v — u®
fori=J:—-1:0 v—v+ R;Qi(f— Av) endfor
ubtl — .

endfor

(5.30) Lemma. For the Algorithm 5.1 with m = 1, we have
(5.31) T—ByjA;=(-T)I-T) - (I-Ty)
where

To= Py, T, = R Ap Py, 1<k < J.

Hence, with such defined operators By, the iteration (5.15) is mathematically equiva-
lent to Algorithm 5.29.
Furthermore if BT 1is oblained from Algorithm 5.14 for general m > 1, then

11— BJ Aslla < || — BsAs|a-

Based on the above lemma, different proofs may be obtained on the convergence
of the backslash cycle multigrid method. In particular, the framework given in § 3 can
be applied. This new analysis does not depend crucially on the elliptic regularity and
hence can be applied more easily to more complicated situations such as the problems
with large discontinuous jump coefficients and locally refined meshes (see § (5 — 7)) .

We now consider the more general case in which we do not assume any elliptic
regularity for the underlying partial differential equations. (4.1).

We assume that all the smoothers Ry satisfy

(5.32) (Rgv,v) < wl(Alzlv, v) YveE M.

and, if Ry are all symmetric

(5.33) DO (v, v) < (Rpw,v) < <L(v,v0) Yo € My.
Ak Ak

or, in general
Cp — C1

(5.34) —(v,v) < (Rgv,v) < —(v,v) YveE My
)\/g >\k



where Rj is the symmetrization of Ry (see § 2-a).

By Lemma 5.13, the Gauss-Seidel methods satisfy the above assumptions.

The idea is to use the general framework of § 3. According to the theory there,
we need to estimate two basic parameters, namely Ky and K.

By Theorem 4.30 and (5.33), there exists a constant Cj independent of mesh
parameters such that

(5.35) Ko < Co.

(5.36) Lemma. The €; defined in (3.27) satisfy, for some v € (0,1) independent of
mesh parameters,

(5.37) éij S AN

Proof. Let i > j. It follows from Lemma 4.26 and (5.33) that
(Tivj,v)a S Hojllall Tl S 7777 (v 05)a Y vy €V

The desired estimate then follows from the definition of ¢;. 0O
By definition, we conclude from above lemma that there exists a constant C}
independent of mesh parameters such that

(5.38) K <Cy.

With the above results, the following result follows directly from Theorem 3.46.

(5.39) Theorem. Assume that the smoothers Ry satisfy (5.33) and (5.32) with wy <
2, then the backslash cycle Algorithm 5.14 or Algorithm (5.29) satisfy

2—w1

Il —BjAs;|I5 <1-

for some positive constant C' independent of mesh parameters.

Another convergence analysis using full elliptic regularity. If the full elliptic reg-
ularity is valid, however, a more straightforward proof can also be obtained in this
new framework. We shall first present such a proof.

(5.40) Theorem. For the ileration (5.15) with By given by Algorithm 5.14 with one
smoothing on each level, then

11— Byas} <1- =2
C1

Proof. Denote F_y = I and for 0 < < J,
Bi=(I-T)I-Ti1)- (I~ T)(I—Ty).

Note that By = (I — ByAy)*. It follows that, denoting P=p— Py,
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J
lllZ = Y (Piv,v)a
7=0
J ~
= Z(B’%E’-W)A (since (I — Es_1)v € M;_1)
7=0
J
= Z(PN,AiPiEi—w)
7=0
J ~
< Ve A PIBwllall A B ]| (by (5.19))
i=0
- J
< =SBl a(RA P E; yv, AiPiEi_v) ' (by (5.18))
‘o 7=0
C J ~
< Jiimawanmqumqw%
7=0
o I 1/2 , J 1/2
< J5<§ymwﬁ) (EJE&AMEme)
o J /2 , J 1/2
< Hg(;HB’UHi) (;(TiEz’—lvaEi—lv)A)
p 1/2
1
< 2 et (1l - 1ol
0]
Consequently,

Co
1Esoll3 <(1- ;)Ilvlli VveV.

The desired estimate then follows easily. 0O

5-f. Full multigrid cycle. We shall now describe a more efficient multigrid
technique, called full multigrid cycle, originally proposed by Brandt.

On each level of finite element space Vy, there corresponds to a finite element
approximation uy € Vi such that

(5.41) a(u®) vy = (F,v) YoeV.

Similar to (4.11), the best error estimate in H' norm is

(5.42) U =™y = O(hy).

If u(®) € R"* is the nodal value vector of u*), then

(5.43) App®) =),

where ") = ((F, ¢¥)). It can be proved that, with ZF** given by (5.16)
b = (R +) with 5D = b,

The full multigrid method is based on the following two observations:
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1. w1 € Vp_1 C Vg is close to u®) € V;, and hence can be used as an initial
guess for an iterative scheme for solving u(*).

2. Each u®) can be solved within its truncation error shown in (5.42) by a
multigrid iterative scheme.

(5.44) Algorithm. i) — AT'6(M). Fork=2:J
1op®) =k k=)
2. Iterate fF) — g 4 B (b*F) — A g®)) for m times.
The most important fact on the full multigrid method is that it has an optimal
computational complexity O(N) to compute the solution within truncation error.

(5.45) Proposition. Assume that that Cy is a posilive constant satisfying (for all k)
|15 = u*= D] 4 < Cohg
Then

11*) — ¥ |4 < b
log(2* + Cb)
|log 6]

Proof. By definition, ||u(") — ji'||4 = 0. Now assume that

a0 = @514 < B,

Then
[a®) — iFlla < ™) — fh |
S T T | P [ e L | A
< §M(Co+ 2
< hf
0

5-g. BPX multigrid preconditioners. We shall now describe a parallelized
version of the multigrid method studied earlier. This method was first proposed in
Bramble-Pasciak-Xu [9] and Xu [31], and is now often known as the BPX precondi-
tioner in the literature.

Basic algorithm and theory. There are different ways of deriving the BPX
preconditioners. The method was originally resulted from an attempt to parallelizing
the classic multigrid method. With the current multigrid theoretical technology, the
derivation of this method is not so difficult. We shall first derive this preconditioner
based on Theorem 4.30 and then, in the next subsection, study the method using the
framework of subspace correction.

By Theorem 4.30, we have

J
(Av,) 2 3 h2I(@Qu = Qe 0l = (Avo) v eV,
k=0
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where
A= 0@k — Qi)
k
Using Lemma (4.20), we can show that

= hi(Qr — Qr-1)-
k

Using the fact that h; = 2h341, we deduce that

J J J-1
(A=Y, v) Zh% (Qr — Qr—1)v,v) :Zh kv,v)—Zh%_H(ka,v)
k=0 k= k=0

J—1 J
= hi(v,v)+ Zh%(ka v) = Zh (Qrv,v) = (év,v)
k=0 =0
where
B J
=D hiQx.
k=0
If Ry : My — Mj, is an SPD operator satisfying
(546) (Rkvk, Uk) = h%(vk, Uk) Vv € Mg
then, for
J
(5.47) B =) RiQy
we have
(Bv,v) = (Bv,v) = (A" v, v)
namely

k(BA) =1

(5.48) Theorem. Assume that Ry’s satisfy (5.46); then the preconditioner (3.7)
satisfies

k(BA) = 1

We note that all the relaxation methods mentioned earlier, such as Richardson, Jacobi
and symmetric Gauss-Seidel satisfy (5.46).

Subspace correction approach. In § 5-e, the slash cycle multigrid method is
interpreted as a successive subspace correction method. Correspondingly, the BPX
preconditioner can be interpreted as the relevant PSC (parallel subspace correction)
preconditioner. It is possible to use the abstract theory in § 3 to derive some estimates
for the BPX preconditioner somewhat more refined than that in Theorem 5.48, we
leave the details to the interested readers. In § 5-i, we shall use this approach to
analyze the BPX preconditioner for locally refined meshes.
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Implementation. Again, in view of (3.54), the algebraic representation of the pre-
conditioner given by (3.54) is

J
(5.49) B=> TRy},
k=0

where Z;, € R"™*"k is the representation matrix of the nodal basis {qﬁf} in Mj In
terms of the nodal basis {¢;} of M, i.e. (¢%,-- ,qﬁﬁk) = (g1, -, on)PLy.

Let Z; 1! € R?*+1% he as defined in (5.16), then
=Tl IR
This identity is very useful for the efficient implementation of (5.49) on both serial

and parallel fashions.
If Ry, are given by the Richardson iteration, we have

J
(5.50) B=Y hi I}
k=0

From (5.49) or (5.50), we see that the preconditioner depends entirely on the
transformation between the nodal bases on multilevel spaces.
Let, for 1 <1< J,

l
B =Y IiRi(Z})".
k=0

By definition B = By and
Bi=Ri+Ti_ B (T]_)".

We shall use the above recurrence relation to compute the action of B. Assume that m;
is the number of operations that are needed to compute the action B;«; for oy € R™.
By the identity

Bioay = Riaq +Zi_y [Bi1(Z{_,) 1]
we get, for some constant ¢ > 0,
my < my—1 + cony
from which we conclude that
J
my < my +COan <an
=2

for some positive constant ¢;. This means that the action of By can be carried out
within O(n) operations.

(5.51) Algorithm (CoMPUTATION OF Ba).

ay = q;
forl=1J:1,

a—1 = (le—l)tal;
end
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By = Roav:

forl=1:J],

B =Ry + T Bi-1;
end
B()z :BJ.

As it is discussed above, the number of operations needed in the above algorithm
is O(n). We also note that all the vectors a; for 1 < k& < J need to be stored, but the
whole storage space for these vectors is also only O(n).

5-h. Hierarchical basis methods. Assume that we are given a nested sequence
of multigrid subspace of HJ(£2)

MiCMyC...CMpC...CMjy.

as described in §sc:nestedMG. The so-called hierarchical basis refers to the special set
of nodal basis functions

(5.52) {oF a2l € Nk \ Nj—1,k=0,---,J}.

It is easy to see that this set of functions does form a basis of M. For d # 2, it is
often more convenient to use the scaled HB as follows

(5.53) {hi=%F 2l e Mg\ Nj_1,k=0,---,J}.

With a proper ordering, we shall denote the scaled HB by {¢;,i=1: N}.

The HB in multiple dimensions is formally a direct generalization of the HB in one
dimensional case. But the property for the corresponding stiffness matrix in multiple
dimensions is not all as clear as in one dimension where the stiffness matrix is an
identity matrix in some special case. In this section, we shall show that at least in
two dimensions, hierarchical basis is still very useful.

The hierarchical basis in two dimensions was first analyzed by Yserentant in his
pioneering paper [36]. The work of Yserentant was apparently motivated by the fa-
mous unpublished technical report of Bank and Dupont [1]. Incidently these three
authors got together wrote another important paper Bank-Dupont-Yserentant [3] on a
Gauss-Seidel (or multiplicative) variant of the hierarchical basis method. The presen-
tation of the materials in this section is of course mostly based on the aforementioned
papers, and moreover it also adopts the view of subspace correction from Xu [32] (see

also Xu [31].

Preliminaries. We shall now discuss multigrid subspaces that are directly re-
lated to the HB. Consider the part of the HB functions on level k as follows

(5.54) {F 1 2] € Niy \ M1}
It is easy to see that the above set of functions spans to the following subspace
(555) Vk = (Ik — Ik_l)M = ([ - [k—l)Mk, for k = 0:J.

Here, we recall, I_y = 0 and I : M — M, is the nodal value interpolant. The above
subspaces obviously give rise to a direct sum decomposition of the space M as follows

V= @izovk.
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In fact, for any v € V', we have the following unique decomposition
J
v= ka with vy = (I — Ip—1)v.
k=0

With the subspaces Vi given by (5.55), the operators Ay are all well conditioned.
In fact, by (4.22) and (4.5), we can see that

Ao, 0) = b2l Vv e Wi

~

As a result, the subspace equations can be effectively solved by elementary iterative
methods such as Richardson, Jacobi and Gauss-Seidel methods.

Stiffness matrix in terms of hierarchical basis. The easiest way of under-
standing the HB is perhaps, like in one dimension, through the study of the property
of the corresponding stiffness matrix. As one may expect, the condition number of
the HB stiffness matrix should be smaller than the NB stiffness matrix. This is indeed
the case in two and three dimensions.

(5.56) Theorem. Assume that A is the stiffness matriz under the scaled hierarchical
basis, then

(5.57) K(A) S alh)
where

1 ifd=1;
(5.58) ka(h) << |loghl? ifd=2;

h2-d ifd > 3.

In fact, the estimates given in the above theorem can be proven to be sharp. The
most interesting case is obviously d = 2 for which k(A) < |logh|?. Compared with the

conditioning of the stiffness matrix under the NB, this 1s a great improvement. It is
also in the case d = 2 that the HB is most useful. Indeed for d = 3, the If(/i) =0(h™Y
is also one magnitude smaller than the condition number of the NB stiffness matrix,
but such an improvement is not attractive as we shall see that a much better approach
(such as BPX preconditioner) is available. There is no doubt that, as far as KZ(A) is
concerned, the HB is of no use for d > 4.

Proof. Given a € RY set v = Zf\;l a; ;. We can write

v:ka with vy = (I — Ir—1)v = Z afqﬁf.
k e e N \Ngk -1
It follows that
iz > viEh = YD (@)=l
X eNR\Ni_1 TR EN\ N1
Thus

ot Ao = a(v,v):Za(vk,vl)

&l
Z 'ylk_” |vg]i|vilr (by Lemma 4.27)
ki

DIl = laf.

k

N

N
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This implies that Apax(A) < 1. On the other hand

Dokl =D 1k = Ieoa)olf
k k

< D U—k+ i (by (4.22))

< ma(W)olf < wa(h)a' Aa

Jaef?

2l

This proves that )\min(/i) > ka(h)='. O
The above proof is essentially the same as in Yserentant [36] (and see also Ong [29]

for d = 3).

Subspace correction approach and general case. Following Xu [32], we shall
now study the HB method from the viewpoint of space decomposition and subspace
correction.

In view of (3.54), the algebraic representation of the PSC preconditioner is

J
(5.59) H=> SiRiSi,
k=0

where ), € R?*("x=7x-1) is the representation matrix of the nodal basis {¢f} in M,
with ¥ € Ng \ Mi_1, in terms of the nodal basis {¢'} of M.

A special case. If Ry, is given by the Richardson iteration: Ry = hi_dI, we have

J
H=> hi 88 = 55"

k=0

where
S=(hy"28,, hy=S, - BTS))

is the representation matrix of the HB in terms of NB. Obviously the HB stiffness
matrix and NB stiffness matrix are related by A = 8*AS. Therefore,

K(HA) = k(A),
and, as a result of Theorem 5.56,
(5.60) k(HA) < kq(h).

The above estimate apparently also holds for the more general H when R is given
by either Jacobi or symmetric Gauss-Seidel since either of this iteration satisfies the
following spectrally equivalence

(5.61) Ry = b4,

In fact, the estimate (5.60) also follows easily from the general theory for the PSC
preconditioner. To see this,

For the SSC iterative method, it is more convenient to choose Ry to be the
symmetric Gauss-Seidel as the other two methods need to be properly scaled to assume
that wy € (0,2). The resulting algorithm is
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(5.62) Algorithm. u° € R™ is given. Assume that p* € R™ is obtained. Then p't?
18 defined by

/A R 5o R St () — A=D1

fork=10:J.
It can be proved late that

]
(5.63) =l < (1= —5=) the= ol

wa(h)

Convergence analysis. (5.64) Lemma. We assume that Ry is either Richardson,
or Jacobi or symmetric Gauss-Seidel iteration, then

A2 lA S (RiAgv,v)a <wi(v,v)a, YvE V.

where wy 1s a constant and for symmetric Gauss-Seidel, wq = 1.

Proof. The proof for Richardson or Jacobi method is straightforward. The proof
for the symmetric Gauss-Seidel method is almost identical to that of Lemma 5.12 and
the detail is left to the reader. O

(5.65) Lemma.

Ko<eq and Kp <1,

where ¢1 = 1,¢0 = J? and ¢g = 9(d=2)J for d > 3.
Proof. For v € V, it follows from (4.22) that

J
Do il S eallolfi-
k=0

This gives the estimate of K. The estimate of K follows from Lemma 4.27. 0O
By using Theorem 3.37 and Lemma 3.26, we obtain

(5.66) Theorem. Assume that Ry, satisfies (5.64); then the PSC preconditioner (3.7),
with Vi given by (5.55), satisfies
For the SSC iterative method, we apply Theorem 3.46 with Lemma 5.65 and get

(5.67) Theorem. The Algorithm 3.12 with the subspaces Vi, given by (5.55) satisfies

2—(.;11

Ccd

1EsG <1~

provided that Ry’s satisfy (5.64) with wy < 2.

Compared with the usual multigrid method, the smoothing in the SSC hierar-
chical basis method is carried out only on the set of new nodes N} \ N;_1 on each
subspace My. The method proposed by Bank, Dupont and Yserentant [3] can be
viewed as such an algorithm with Ry given by an appropriate Gauss-Seidel iterations.
Numerical examples in [3] show that the SSC algorithm converges much faster than
the corresponding SSC algorithm.
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Relation with BPX preconditioners. Observing that Sp in (5.59) is a sub-
matrix of 7 given in (5.49), we then have

(Ho,a) < (Ba, o), YaeR™

In view of the above inequality, if we take

b
—

H=> hi 88} +1,
o]

el
1l

we obtain
(Ha, o) < (’):la, o) < (Ba,a), YaeR™

Even though H appears to be a very slight variation of H, numerical experiments
have shown a great improvement over H for d = 2. We refer to Xu and Qin [35] for
the numerical results.

5-i. Locally refined grids. In practical computations, finite element grids are
often locally refined (by using some error estimators or other adaptive strategies).
In this subsection, we shall describe optimal multigrid procedures for adaptive grids.
Our presentation here is based on [9], [7] and [6].

With appropriate rearrangement and grouping, we may assume that the mesh
refinement can be done in the following fashion. We first start with the original domain
Q which is also denoted by €2¢. We introduce a relatively coarse and quasiuniform
triangulation of ¢ with a mesh size hp and denote the corresponding finite element
space by Vo C H&(Qo). Let € be a subregion where we wish to increase the resolution
and we do so by subdividing the elements of the first triangulation and get a new
triangulation of £2; with mesh size Ay in £2; and introduce an additional finite element
space V1 C H{(21). We repeat this process and finally get a collection of subdomains
Q; together with the corresponding finite element spaces V; defining on a triangulation
of mesh size h; for i = 1,2, -- -, J for some integer J > 1. Throughout, we have

Q; C Qi Vioi N H (%) C Vi C Hy(), i=1,2,---,J.

The finite element space on the repeatedly refined mesh can be written as

The only restrictions on the mesh domains {2} are that 9 for £ > 1 consists
of edges of mesh triangles in the mesh 7;_; and that there is at least one edge from
Ti—1 contained 1n €2.

Let A :V — V be as defined by (4.16). Operators A; : V; — V; and Q;, F; :
V — V; can be defined similarly as before. If we choose R; : V; — V; to be some
appropriate approximate solvers of A;’s, we then have all the ingredients to define
our PSC and SSC algorithms. In this setting, the coarse space Mgy may not be very
coarse, therefore we assume that, for the PSC type of algorithm, the first subspace
solver Ry is SPD and satisfies

(5.68) (Ry'v,v) = (Agw,v) Y v &€ My,
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and for the SSC type of algorithm, we assume that Ry satisfies
(5.69) I = RoAo)lla < &

for some 6, € (0, 1) independent of mesh parameters.

As for the other subspace solvers Ry for k > 1, for clarity, we assume that Rj is
given by a Gauss-Seidel iteration or properly damped Jacobi iteration. But apparently
other reasonable solvers can also be adopted.

We would like to remark that the corresponding PSC and SSC methods in this
setting can be viewed as a “nested” multigrid method associated with the multilevel
spaces given by

k
M=V, 0<k<J

1=0

but with special coarse space solvers Ry only defined on the subspace Vi, namely the
smoothings are only carried in the refined regions.

To analyze the corresponding PSC and SSC methods, we introduce, for each &, an
auxiliary finite element space M, which is defined on a quasi-uniform triangulation
with mesh size h; and satisfies M}, C Mk and MO Cc---C MJ. It is easy to see that
M, can be well defined. Corresponding to the space Mk, let Qk :V — M be the
L? projection.

The following result (from [7]) plays a crucial role in our analysis for the algorithms
discussed 1n this section.

(5.70) Lemma. Assume that hgy—1/hy < C. There erists a sequence of linear op-
erators Iy, - V — My for 'k =0,1,2,---J with Iy = I such that, for any v € V,
(Il —Mg—1)v € Vg and

(5.11) (1 = Wz )of] S 1I(1 = Qr)vll
and
(5.72) ILxvfla < (lvlla-

Proof. The linear operator Il is then defined, for v € V, by v = w, where w is
the unique function in M;, satisfying

ka at the nodes of My, in the interior of Q41,
w= .
v at the remaining nodes of M.

By this definition, it is clear that (Il — Iy_1)v € V;. To establish (5.72), we first
note that

1Qrv — wlf* < ChIX(Qro(xf) — v(f))® < ClI(I = Qu)ol?,

where the sum Z' 1s taken over the nodes xf of My on 0Q41. Combining the above
estimate with (4.12) yields

I = TeJoll < (T = Qu)vll + [1Qrv — wll < (I — Qi)vll
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This proves part of the estimate (5.71). The rest of (5.72) can be estimated
similarly by using ||IIzv||a < ||(I — Q)v||a + ||v — w||a. This completes the proof. O

(5.73) Lemma. Let Il : V — M. be the operator from in the previous lemma and
IT_y = 0, then, there exists a constant cy independent of mesh parameters such that

J
(5.74) Sl = Te_1)oll; < collolly VveV.

k=0 B
Proof. By Lemma 5.70, we have, for k > 1,

(T = We—)olly < 2017 = Wejol3 + [|(2 = Te)ol)
< 21 = Qe-1)vll3 + 17 = Qe-1)vll2)
Thus, combining (5.72),

J

J
D Al = Wema)ol3 < 1olla + D2 Akl — Qe)vll

k=0 k=0
The desired estimate then follows by using Theorem 4.31. O

PSC version. Let us first consider the preconditioner corresponding to the PSC
algorithm:

J
(5.75) B=> RiQs.
k=0

Thanks to Lemma 5.73, similar to the quasiuniform case, we can use our general
framework in § 3 to obtain the following theorem.

(5.76) Theorem. If Ry salisfies (5.68) and Ry, are given by Jacobi or symmelric
Guauss-Seidel, then the PSC preconditioner (5.75) yields a uniformly bounded condition
number

k(BA) = 1.

As a special example, we may choose Ry as follows:

(5.77) Ryv=hi™" 3" (v,6])f

zheNy

as we know this corresponds to Richardson iteration which is equivalent to Jacobi
iteration. For such a choice, we obtain that

J
(5.78) Bv=Rov+ Y hi™" > (v,¢¥)0f.
k=1 XNy

We notice that (5.78) is exactly the preconditioner given in [9] for locally refined
meshes.
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The hierarchical basis type algorithms for these composite grids can be obtained
by the decomposition with V; = (I; — I;_1)V (here [; : V — M; is the nodal value
interpolation operator). It is easy to see that the SSC type preconditioner is

J
(5.79) Ho=Rov+ 3 hi™" 3" (v,00)ef.

k=1 l'I;ENk\Nk—l

This preconditioner is equivalent to what is given in [36] for refined meshes. We
further point out the corresponding algorithm in [3] for the refined meshes is the SSC
algorithm by choosing Rj to be some appropriate Gauss-Seidel iteration.

SSC version. The SSC version correspond to multigrid algorithms with smooth-
ings done in the refined regions. Similarly we have the following convergence theorem.

(5.80) Theorem. If Ry satisfies (5.69) and Ry are given by properly damped Jacobi
or Gauss-Seidel, then the corresponding SSC' iteration yields a uniform contraction:

[|I — BA|la <6
for some & € [0, 1) independent of mesh parameters.

Additional bibliographic comments. The multilevel algorithm for finite element or
finite difference equations was first developed in early sixties by the Russian math-
ematician Fedorenko [20]. In the early seventies, Brandt [12] brought this method
to the attention of western countries and extensive research have been done on this
method since then. It has become one of the most popular and also most powerful
iterative methods in nowadays.

Multilevel method for composite grids can be traced back to Brandt [12] or com-
posite grid in McCormick [25] (see also the references therein). The finite element
space on so refined mesh is V = Z;]:O V;. PSC and SSC methods can be naturally ob-
tained with Gauss-Seidel iteration as subspace solvers. The SSC iteration corresponds
to a multigrid method with smoothings carried out only on the refined region discussed
in Brandt [12]. The PSC preconditioner was first considered in Bramble-Pasciak-Xu
[9].

The aforementioned refined grids may not give the minimal degree of freedoms
from approximation point of view, but it is a computationally efficient approach
that has the desirable structure for multigrid applications. If a more traditional
graded meshes are used on each level, proper nested subspaces are then hard to come
by and the corresponding nonnested multigrid methods are more complicated (cf.

Zhang [38]).

6. Multigrid Methods for nonnested subspaces and varying bilinear
forms. Theories presented in previous sections are based on the assumptions that
the multilevel subspaces are nested in the sense the the coarse spaces are subspaces
of the finer spaces and that the bilinear forms on each level are all the same. In
this section, we shall present a more general theory that do not depend on these
assumptions. Such a theory has been successfully applied to many situations and
some example of applications will be briefly mentioned near the end of this section.

Assume we are given a Hilbert space H and a hierarchy of real finite dimensional
subspaces of H

Mo, My, Mo, ... M
50



which are related by the so-called prolongation operators Iy, : My_1 — M.

In addition, let Ay (-, -) and (-, )5 be symmetric positive definite bilinear forms on
My . We shall develop multigrid algorithms for the solution of the following problem:
Given f € My, find u € M satisfying

As(u,0)=(f,¢)s Yo € M,.

To define the multigrid algorithms, we need to define some auxiliary operators.

For k =0,...,J, the operator Ay : M}, — M, is defined by

Clearly the operator Ay is symmetric positive definite (in both the A(:,-) and
(+,*)r inner products). In terms of the prolongation operator I, we have operators
Il My — My—1 and I} : My — My_; defined by

(61) ([lzw) ¢)k‘—1 = (wa ]k‘¢)kAk—1(Izwa ¢>) = Ak(w’ [k¢) Vw € Mka ¢ S Mk—l-

In other words, I} are iks are the adjoint of I;, with the inner products (-,-); and
Ag(-, ) respectively. I} is often called restriction operator, which is another main
ingredient of any multigrid algorithm.

Another important component of the multigrid algorithm is the smoothing, which
will be represented by a sequence of linear operators Ry : My — My for 1 < k < j to
define the smoothing process. These operators may be symmetric or nonsymmetric
with respect to the inner product (-, -);. If Ry is not symmetric, then we denote by
R: its adjoint and set

" Ry if [ is odd;
R, =
R: if | is even.

With the framework and notation given above, we are now in a position to define
a multigrid algorithm, which will be characterized in terms of a sequence of recursively
defined operators By : My — Mj. In the following, p, mj are given positive integers
and Ay is either equal to p(Ay) or an upper bound of p(Ay) such that Ay = p(Ay).

Algorithm S
Step 1 By = Aal.
Step 2 Assume By_1 is defined. Then By is defined, for ¢ € Mp(Ayw = g), as
follows:

1. Pre-smoothing on My:
w’ =
w!
| =

-1 +R§€l+mk)(g _Akwl—l)
’...’mk'

—
[N S

)

2. Correction on My_1: w™ ! = w™ 4 [qP where ¢° € My_1 is defined
as follows, with ry, = g — Apw™*,



3. Post-smoothing on My:

w = w=t 4 Rgcl+mk+1)(g — Apw'=1)

l:mk+2,~~~,2mk+1.

Define: Brg = w?™ =+,

(6.2) Remark. Ordinarily, the above multigrid methods can be made more general.
For example, In Step 1, By may be defined by an iterative method which solves the
equation approximately on M. Another generalization is that the number of pre-
and post-smoothings are not necessarily the same. Nevertheless we are not going
to consider these more general cases here. However in some circumstances it seems
crucial to our theory that the number of pre- and post smoothings should be the
same, which will guarantee that the multigrid operators By are also symmetric(see
Lemma 6.6). This is reasonable and important from many viewpoints. The most
natural reason would be because the original problems are symmetric themselves.

A great advantage in setting out the algorithm by means of the operators Bj
. . L - Ld
is that we have a very simple recurrence relation for the “residue”operator FEj )

I — Bp A as given in the following lemma.

(6.3) Lemma. Let By = I — B Ay and Ky = I — R Agx. Then

(6.4) Ep = (K"™) (I = Inli) + LB I) K™
Furthermore, for any u,v € My,

(6.5) Ap(Eru,v) = Ap((I = LI})a, ) + Ap—1 (B} _ I}, Ig0),
where @ = I;;"ku and

e (K,’;K,c):T_lK;, if m is odd;
k (K Ky)=, if m is even.

The verification of the above lemma is straightforward by the definition of the
algorithm. The next thing we want to address is that the Algorithm S defines a
symmetric operator. More specifically, we have

(6.6) Lemma. By is symmetric with respect to (-, )y and Ey is symmetric with
respect 1o Ag(, ).

We observe that in the algorithm stated above, p and my are free parameters.
With different parameters, we will take account of the three types of the algorithms
named in the following:

(6.7) Definition. The Algorithm S is known as the
1. V-cycleifp=1and mpy =m>1 fork=0,---,J,
2. W-eycle if p=2 and my = m>1 fork=0,---,J,
3. Variable V-cycle if p =1 and yvomp < mp—1 < y1my fork =0,---,J, where
Yo and 1 are constants greater than 1.
The subsequent multigrid convergence theory is largely based on two basic as-
sumptions, one is concerned with the smoothing operators I; and the other is relevant
to the “regularity” of the underlying problem and the approximation property of the
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multilevel spaces. More refined convergence estimates depend on more assumptions
on prolongation operators and such assumptions will be stated during the presentation
of the convergence theory.

The assumption on the smoothing operator Rj which concern only one level of
space 1s the same as in the nested case.

(A0) [v]]? < CoAr(Rrv,v)

where Ry, is the symmetrization of Ry (see § 2-a).
A direct consequence of (AO0) is

(A0) p(Kp) < 1,

where p(-) denotes the spectral radius. This assumption will be used in place of (A0)
to get some more general (but weaker) results.

The second assumption, usually called “regularity and approximation assump-
tion”, is that there exists a constant 4 € (0, 1] and a constant C; such that

(Al) |Ak((I — IkI;)U,U” < Cl(Ak_lnAkUHkQ)ﬁAk(’U,1))1_0 Yv € My.

This 1s the most crucial assumption in the multigrid theory to be presented in
this section. It relates the bilinear forms, different levels of spaces and prolongation
operators. In the case of elliptic boundary value problems, its verification is strongly
tied to the regularity property of the underlying partial differential equation.

It is not hard to see that (A1) implies that

(6.8) Ap(Iyv, Tv) < CrAg_1(v,0), Yo & My_.

(6.9) Theorem. Under the assumptions (A0) and (A1), the Algorithm S has the
following convergence properties (with a positive constant M depending only on Co, Cy

and f3):

1. W-cycle converges uniformly for sufficiently many smoothings:

I Exlx < if mP? > oM.

mbB/2
2. Variable V-cycle converges uniformly for sufficiently large my:

o
mbB/2

Bl < if mh? > ¢

3. Variable V-cycle gives a uniform preconditioner with any fired number of
smoothings on the finest grid:

(M +m”)?
K(ByAy) < TR
4. If the following condition holds
(AQ) Ak([kv,lkv) SAk_l(v,v) Yv € Mp_1.

Ak(Ikv, Ikv) S Ak_l(v, v)
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Then, the W-cycle and VV-cycle converge uniformly and V-cycle converges nearly
untformly with any given number of smoothings:

ﬁ for vartable V-cycle
k
5
IEx:N: < (m]-l‘-liM)ﬂ for W-cycle
kP

m fOT' V-Cycle

5. If the following condition holds
Ak(Ikv, Ikv) < QAk_l(’U, ’U),

then the W-cycle converges uniformly with any given number of smoothings.
The proof of the above theorem is not very complicated and may be found in [9]

and [31]

Applications. The above theory has found many applications. First of all, the
development of the theory was motivated to applications to multigrid methods for
unstructured grids. Unstructured grids refer to grids that do not have a natural
multilevel structures. Most of the grids generated by traditional grid generators may
fall into such a categories. In this application, one has to coarsen the given grid to
obtain a sequence of often nonnested multilevel coarse grids. There have been many
coarsening techniques available in two dimensions, see Chan and Smith [16], Bank
and Xu [4] and others.

Another important application is to multigrid methods for nonconforming finite
elements (especially to fourth order problems). Nonconforming elements often give
rise to nonnested multigrid subspaces (even on nested multilevel grids). A major
concern in this application, is the choice of prolongation operators which are often
obtained by using proper averaging techniques. In most applications, estimates like
(A2) or (A3) are hard to be satisfied and hence only W-cycle or variable V-cycle can be
proved to be convergent with sufficently many smoothings, or variable V-cyle gives rise
to an optimal preconditioner. One interesting exception of the above phenomenon is
the work by Chen and Oswald [17] and Chen [18] where they have proved that (A2) or
(A3) can be satisfied for some nonconforming P; elements in some special situations.
For this application and related subjects, we refer to Brenner [14] (and the references
cited there),

7. The auxiliary space method and an optimal preconiditioner for un-
structured grids. In this section, an abstract framework of auziliary space method
is proposed and, as an application, an optimal multigrid technique is developed for
general unstructured grids. The auxiliary space method is a (nonnested) two level
preconditioning technique based on a simple relaxation scheme (smoother) and an
auxiliary space (that may be roughly understood as a nonnested coarser space). An
optimal multigrid preconditioner is then obtained for a discretized partial differential
operator defined on an unstructured grid by using an auxiliary space defined on a
more structured grid in which a further nested multigrid method can be naturally
applied. This new technique make it possible to apply multigrid methods to gen-
eral unstructured grids without too much more programming effort than traditional
solution methods.

The materials in this section are taken from Xu [33].
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7-a. The auxiliary space method. The auxiliary space method is a general
preconditioning approach based on a relaxation scheme and an auxiliary space. As
mentioned in the introduction, this method can be interpreted in various ways but it
may be best understood as a two level nonnested multigrid preconditioner. A detailed
description of this approach will be described in details below and two theorems will
be given for estimating the condition number of the preconditioned system.

Assume that a linear inner product space V is given together with a linear operator
AV — V that is SPD (symmetric, positive and definite) with respect to an inner
product (-,-). Consider the linear equation (2.1). The main ingredient in the new
preconditioning technique is another auxiliary linear inner product space Vy together
with an operator Ay : Vo — Vy that is SPD with respect to an inner product [-,-]
on Vy. This space, in most applications, may be viewed as certain approximation for
V. The space Vy needs not be a subspace of V in general, but it should be, in some
sense, simpler than V. The operator Ay may be viewed as certain representation or
approximation of A in the space Vy and Ay 1s assumed to be preconditioned by another
SPD operator By : Vg — Vy. In another word, the auxiliary space V) is chosen in
such a way that the equation given by Ay can be more easily solved than (2.1).

The auxiliary space Vg is linked with the original space V by an operator II : Vo —
V. If Vy is viewed as a “coarse” space, Il plays a role of prolongation in multigrid
method. The “restriction” operator is given by its adjoint 11* : V ~— Vy defined by

[M'v,w] = (v, Tw) v € V,we V.

Another ingredient is an SPD operator R : V — V. The role of R is to resolve
what can not be resolved, in preconditioning A, by the aforementioned space Vy and
the operators defined on V,. By the multigrid terminology, R is like a smoother.
In most applications, R is given by a simple relaxation scheme such as Jacobi and
Gauss-Seidel method.

With the ingredients described above, the proposed preconditioner is as follows.

(7.1) B =R+ UB,II".

In the special case that Vo C V and [-,-] = (+,-), II can obviously be given by the
natural inclusion operator and as a result II' is nothing but the orthogonal projection
Qo : V — Vy. In this case, the preconditioner (7.1) is reduced to

B =R+ ByQo

which is the two-level special case of the general nested multilevel preconditioner in
Bramble-Pasciak-Xu [9].
By definition, for any u,v € Vy,

(7.2) (BAu,v)4 = (RAu,v) 4 + [BoAoII™u, " v] 4,
where (-, )4 = (A, -), [, Ja, = [Ao-, -] and 11* = Aj'1I* A satisfying
[T*v, w]a, = (v, Mw)a v EV,weVy.

Denote pa = p(A4), the spectral radius of A. Also denote by [|-|| the norm induced
»

by either (-,-) or [-,-]. The main abstract result in this section is stated below.

(7.3) Theorem. Assume that there are some nonnegative constants ag, oy, Ag, Aq,
and By such that, for all v €V and w € Vy,

(74) WOPZI(”)”) < (Rv)v) < alpzl(vvv))
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(75) Ao[w’w]Au < [BOAOwaw]AD < Al[waw]Aua

(7.6) ITwlld < Billwlli,,

and furthermore, assume that there exists a linear operator P : V — Vy and positive
constants By and vy such that,

(7.7) 1Po[%, < B3 vl
and
(7.8) o = P> < 95" ptIolf%-

Then the preconditioner given by (7.1) satisfies
(7.9) K(BA) < (a1 + F1A1)((2070) ™" + (Foro) ™).
In particular, if P 1s a right inverse of Il namely I1Pv = for v €V, then

B M
(7.10) w((MBITH)A) < B

Proof. One first notes that (7.6) is equivalent to
[ vl3, < Bullella Yvev.
By (7.2) and the assumptions, one has
(BAv,v)a < anpy[|Av]) + A 0|3, < (o1 + ALBy)||olf-

This means that Apax(BA) < a3 4+ f1A1.
It follows that

(v,v)a = (v—MLPv,v)s + [Pv,II"v]4,
< o = TP||[JAv]] + [|Po||ag [T ]| 4,
< (opa) 2ol acg PP A (RAV, Av)? (by (7.8) and (7.4))
485 P ollarg P IBo Ao o, 0] /2 (by (7.7) and (7.5))
< ((@070) ™+ (Bodo) ™D Julla(BAv, 0)y*  (by (7.2)).

This implies that Amin(BA) > ((a070)™" + (BoAo)™ )t The estimate (7.9) then
follows.

In the particular case that P is a right inverse of II, one may take vy = oo and
R = 0, the proof of the corresponding estimate is then transparent. 0O

The last estimate for a special case in the above theorem corresponds to the
fictitious space lemma of Nepomnyaschikh [26, 27]. A necessary condition for Il to have
a right inverse is that Il : Vo — V is surjective. As a consequence, dimVy > dim V),
namely that Vy has to be at least as rich as V. Furthermore the construction of II
also needs more caution. The introduction of an additional smoother (or relaxation
operator) R greatly relaxes the constraints on the choice Vy and II in the fictitious
space approach and, hence the resulting preconditioner is potentially more flexible
and more robust.
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(a) (b) ()

Fia. 4. An example of an auwziliary grid together with two nested coarser grids.

7-b. A special technique for unstructured grids. This subsection is to con-
struct optimal multigrid preconditioners for finite element matrix from unstructured
grids. The term “unstructured grids” here loosely mean those grids that do not possess
natural or convenient multilevel structures. The main idea is to choose an auxiliary
space from a rather structured grid in which a natural nested multilevel structure is
available. This idea was briefly discussed in Xu [34].

In this section, the model problem in §3.1 will be used and the conforming piece-
wise linear finite element spaces over quasi-uniform triangulations 75, will be consid-
ered. Let Qp be the mesh domain determined by 73, namely

Qn = Urer, 7.
To avoid unimportant technical difficulty, 1t is assumed, for all feasible h, that
Qp C Q.

The finite element space Vj, consists of continuous piecewise (with respect to 73) linear
functions that vanish on Q\ Q.

A structured auxiliary finite element space. Given a uniform square parti-
tion of the whole space with mesh size

ho=2"7=h

for some integer J = |logh|, let 7y be the union of squares (d = 2) or cubes (d = 3)
that are contained in € (see Figure 1(a)). Let o denote the mesh domain determined
by 7y, namely

Q0 - UTETui—'
By construction, ¢ C Q and

max dist(z,9Q) < h.
€\ Qo

The set of interior nodes of 7y will be denoted by Ny = {ZL‘? 1 <j<net

An auxiliary finite element space Vy will be defined to be a space of continuous
piecewise bilinear (d = 2) or trilinear (d = 3) functions that vanish on Q\Qg. Alterna-
tively, if 7y is a uniform triangulation (see Figure 1(a)) consisting of triangles (d = 2)
or tetrahedrals (d = 3) from the aforementioned squares (d = 2) or cubes (d = 3), V
may be defined to be a finite element space consisting of continuous piecewise linear
functions that vanish on Q\ Q.
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The finite element space Vg will be used as the auxiliary space for the space V.
Associated with the spaces V5, and Vg, the operators: Ay : Vi — V, and Aq
Vo — Vy are defined by

(Apu,v) = a(u,v) Yu,v €V, (Agug,vo)=aluo,vo) Vuo,vo€ V.

The operators between V5, and Vy will be the standard nodal value interpolants:
Iy : Vo — Vy and Il : Vy, — Vy. The approximation and stability properties of these
two operators will be addressed in the following two lemmas.

(7.11) Lemma. For all vg € Vg,

(7.12) llvo — Hpvol| < Allvollr,  [[Wavollr < [lvollr-

(7.13) Lemma. For all v € Vy,

(1.14) llv = Hov[| < Aflvfly and [[Hov]]s < [ll1-

The proof of the above two lemmas can be found in Xu [33].
An optimal multigrid preconditioner. By the abstract approach in §2 and
the auxiliary space Vg, a preconditioner By, for Aj can be obtained as follows

(7.15) Bp, = Ry + 11 Bollj,,

where By : Vo — V) is a given SPD preconditioner of Ag and Ry, : V, — Vy is an SPD
smoother for A satisfying

(Ryv,v) = h*(v,v).

By Theorem 7.3 and the estimates from the previous subsections, there exist some
positive constants «, 3,7 that are independent of h such that

K(BrAn) < (@ + FAmax (BoAo)) (v + Agin (BoAo)).

The preconditioner By may be obtained by a further multigrid method. Such type
of multigrid method has been discussed by Kornhuber and Yserentant [23]. Setting
T =T (with hy = hg = 2_J) and V; = Vo, triangulations Tr (1 <k < J) (with
hiy = 27F) and their corresponding spaces Vi can be defined similarly. As shown in
Figure 1, if Figure 1(a) corresponds to Vs = Vo, then Figure 1(b) and Figure 1 (c)
correspond to Vi_q and Vy_s respectively. Evidently

]>1C]>2C...C]>J.

Consequently, a BPX preconditioner By may be obtained so that ! x(ByA4y) < 1 and
hence k(BrAn) < 1, or a hierarchical basis preconditioner By may be obtained so
that k(BoAg) < |loghl? and hence k(BA) < |logh|*.

1 Although the corresponding estimate was not optimal in [23] for their more general considera-
tions, but it can be easily proved in the current context by the technique in [32].
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Attention now is turned to the issues such as implementation and complexity of
the aforementioned preconditioner. Let Aj and Ay be the stiffness matrices corre-
sponding to the finite element spaces V;, and Vg respectively. Let Z be the matrix
representation of the interpolation II;, namely

(Mptpr, ..o, Tpthng) = (S1, - - -, G0 )Z,

where {t; : i = 1 : ng} and {¢; : j = 1 : np} are the nodal bases for V} and V)
respectively.
The precondition matrix for the stiffness matrix A can be written as (cf. [32])

By, =Ry + ZBozt

where Rp, represents Richardson, Jacobi or Gauss-Seidel iteration.

By definition, 7 = (aj;) € R™*"0 with «;; = ¢;(z!). Obviously 7 is a sparse
matrix with O(np) nonzeros. The evaluation of «;; depends on the location of xlh
relative to the partition 7. Because of the regularity of 7y, each z! can be located in
7o with O(1) operations by, for example, comparing the magnitude of the coordinates
of 2. Therefore 7 and Z' can be both obtained with O(nj) operations. For a more
direct way of computing the action of Z, for example, if & € R™ and 5 = Z¢, then
ni = w(zl) with w = Zyil &v;. Again w(z?) can be easily obtained as long as the
location of x? is known in 7g.

In summary, when Bj is given by BPX preconditioner, the resulting precondi-
tioner which may be called BPX preconditioner for unstructured grids has the follow-
ing features: 1. one action of B requires only O(nyp) operations; 2. the condition
number of BA is uniformly bounded independent of A in both two and three dimen-
sions; 3. it can be applied to unstructured grids.

REMARK. In practical computations, the auxiliary grid 7y can be more flexible
than given above. For example, one does not have to take the elements that are
exactly contained in €.

REMARK. For simplicity, the details for unstructured grids are only given for
Dirichlet boundary value problems. Applications to more general cases are also pos-
sible. For Neumann boundary condition, for example, it is not sufficient that the
auxiliary grid only consists of those regular elements that are contained in Q. In-
stead, the auxiliary grid consists of all those regular elements that intersect with €.
The application of the technique to locally refined meshes is a little more complicated.
Again the idea is to use a structured refined mesh to define the auxiliary space. Locally
refined meshes with multilevel structures were discussed in Brandt [12], McCormick
[25] (see also the references therein), Bramble-Pasciak-Xu [9] and Bramble-Pasciak [6].

Some remarks. The main spirit of this section is that, with the help of an addi-
tional smoother, a quite rough auxiliary space can be used to construct an optimal
preconditioner for a discretized partial differential operator. For an elliptic partial
differential equation of order 2m, for example, the auxiliary space Vy for a given fi-
nite element space V defined on a grid of size h needs only to satisfy the following
approximation property:

(7.16) inf [l —wllo £ B |ollas VeV

where || - ||o is the L? norm and || - ||, is a (discretized) H™ norm.
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The approximation property (7.16) is a very weak one and is certainly much
weaker than the approximation property that V (as any reasonable finite element
space) should have. One important point to address is that the role of Vy or the role
of a coarse grid in a multigrid algorithm is to resolve the spectrum of the discretized
differential operator and there is no reason that Vy should be comparable with V as
far as their approximation properties are concerned. Roughly speaking, the spectral
property of a discretized partial differential operator is mainly determined by the
original partial differential operator rather than the underlying discretization space.
Hence in order to capture the spectrum of a discretized operator, the auxiliary space
only need to have an approximation property like (7.16) that is related to the order
of the original differential operator but not, in certain sense, strongly related to the
discretization space (V).

The weak approximation property (7.16) makes it possible to use a simple and
structured auxiliary space for preconditioning a complicated and unstructured prob-
lem. As the main application of this general idea, the main concrete conclusion of
this section is that a finite element space defined on an unstructured grid can be well
preconditioned by combining a simple relaxation scheme and a structured grid. As a
consequence, it is possible to solve a finite element equation on a general unstructured
grid by a multigrid approach with an optimal computational complexity.
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