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Highlights

• We formulate the discretized FSI system as saddle point problems.
• We analyze the well-posedness of the FSI saddle point problems.
• We propose optimal preconditioners for FSI discretized systems.

Abstract

In this paper we develop a family of preconditioners for the linear algebraic systems arising from the arbitrary Lagrangian–
Eulerian discretization of some fluid–structure interaction models. After the time discretization, we formulate the fluid–structure
interaction equations as saddle point problems and prove the uniform well-posedness. Then we discretize the space dimension by
finite element methods and prove their uniform well-posedness by two different approaches under appropriate assumptions. The
uniform well-posedness makes it possible to design robust preconditioners for the discretized fluid–structure interaction systems.
Numerical examples are presented to show the robustness and efficiency of these preconditioners.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid–structure interaction (FSI) is a much studied topic aimed at understanding the interaction between some
moving structure and fluid and how their interaction affects the interface between them. FSI has a wide range of
applications in many areas including hemodynamics [1–4] and wind/hydro turbines [5–8].
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FSI problems are computationally challenging. The computational domain of FSI consists of fluid and structure
subdomains. The position of the interface between fluid domain and structure domain is time dependent. Therefore,
the shape of the fluid domain is one of the unknowns, increasing the nonlinearity of the FSI problems.

Many numerical approaches have been proposed to tackle the interface problem of FSI. The arbitrary Lagrangian–
Eulerian (ALE) method is commonly used. ALE adapts the fluid mesh to match the displacement of structure on inter-
face. Other approaches, such as the fictitious domain method [9,10] and the immersed boundary method [11–13], have
inconsistent fluid and structure meshes and, therefore, need special treatment at the interface, such as interpolation
between different meshes. In this paper, we focus on the ALE method.

There is much research focused on solving the fluid–structure interaction problem numerically using ALE formu-
lation. These studies can be roughly classified into partitioned approaches and monolithic approaches [14]. Partitioned
approaches employ single-physics solvers to solve the fluid and structure problems separately and then couple them
by the interface conditions. Monolithic approaches solve the fluid and structure problems simultaneously. Depending
on whether the interface conditions are exactly enforced at every time step, these approaches can also be classified
into weakly and strongly coupled algorithms. Weakly coupled partitioned approaches are usually considered unstable
due to the added-mass effect [15]. A semi-implicit approach proposed in [16] can avoid the added-mass effect for
a wide range of applications, but it is subject to pressure boundary conditions. Several types of semi-implicit meth-
ods were proposed in [17,18]. Strongly coupled approaches are preferred for their stability. Although it is possible
to achieve the strong coupling via partitioned solvers (by fixed-point iteration, for example), they usually introduce
prohibitive computational costs due to slow convergence [19]. In this paper we consider monolithic approaches that
strongly couple fluid variables with structure variables and we address some solver issues.

A great deal of work has been carried out to develop monolithic solvers for FSI [20–23]. In [24], a fully-coupled
solution strategy is proposed to solve the FSI problem with large structure displacement. The nonlinearity is
handled by Newton’s method and various approaches to solve the Jacobian system are proposed. Block triangular
preconditioners and pressure Schur complement preconditioners are used for the preconditioned Krylov subspace
solvers. However, in [20] it is pointed out that block preconditioning for fluid and structure separately cannot resolve
the coupling between fields and it is proposed that structure degrees of freedoms on interface be eliminated in order to
effectively precondition degrees of freedom at the interface. In [23,25–27], a Newton–Krylov–Schwarz method for FSI
is developed. Additive Schwarz preconditioners are used for Krylov subspace solvers and two-level methods are also
developed. In [28,29], ILU preconditioners and inexact block-LU preconditioners are proposed to solve FSI problems.

In this paper, we reformulate semi-discretized systems of FSI as saddle point problems with fluid velocity, pressure
and structure velocity as unknowns. The ALE mapping is decoupled from the solution of the velocity and pressure.
Then, we carry out our theoretical analysis and solver design under this framework. With particular choice of norms,
we prove that the saddle point problem is well-posed.

For the finite element discretization of FSI, we propose two approaches to prove the well-posedness. The first
introduces a stabilization term to the fluid equations and the second adopts a norm of the velocity space that depends
on the choice of the pressure space. Both of these approaches lead to uniform well-posedness of the finite element
discretization of the FSI model under appropriate assumptions.

Based on the uniform well-posedness, we propose optimal preconditioners based on the framework in [30,31] such
that the preconditioned linear systems have uniformly bounded condition numbers. Then, we compare the proposed
preconditioners with the augmented Lagrangian preconditioners [32–35]. These preconditioners are all block precon-
ditioners and their application requires efficient sub-block solvers. To test the preconditioners, we solve the linear
systems coming from the discretization of the Turek and Hron benchmark problems [36]. The iteration counts of
MINRES with several preconditioners are compared.

The rest of this paper is organized as follows. In Section 2, we introduce an FSI model and the ALE method.
In Section 3, we study the proposed time and space discretization and its well-posedness. In Section 4, we propose
optimal preconditioners for the discretized systems and demonstrate their performance with numerical examples.

2. An FSI model

We consider a domain Ω ⊂ RN (N = 2, 3) with a fluid occupying the upper half Ω f and a solid occupying the
lower half Ωs , as illustrated in Fig. 1.
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Fig. 1. Moving domains of FSI.

Let Γ := ∂Ω f ∩ ∂Ωs be the interface of the fluid domain and the solid domain. On the outer boundary of the solid
∂Ωs\Γ , the solid is clamped; namely, the displacement of the solid is zero on ∂Ωs\Γ . In this paper, we always assume
that both ∂Ωs\Γ and ∂Ω f \Γ have positive measures.

In addition, we assume that the interaction of the fluid and solid only occurs at the interface, and the interface Γ
may move over time due to this interaction. We assume that the outer boundary is fixed. In the dynamic setting, we
use Ω f (t) and Ωs(t) to denote the domains at time t ∈ [0, T ]. The domains satisfy Ω̄ = Ω̄ f (t) ∪ Ω̄s(t) and Γ (t) =

∂Ω f (t) ∩ ∂Ωs(t).
We denote the reference domains by

Ω̂ f = Ω f (0), Ω̂s = Ωs(0)

and the domains at time t by

Ω f = Ω f (t), Ωs = Ωs(t).

The motion in the fluid and structure can be characterized by a flow map x(x̂, t); namely, the position of the particle
x̂ at time t is x(x̂, t). Then, given t > 0, x(·, t) is a diffeomorphism from Ω(0) to Ω(t).

For (x̂, t) ∈ Ω(0) × [0, T ], we introduce the following variables in Lagrangian coordinates: the displacement
û(x̂, t) = x(x̂, t) − x̂, the velocity v̂(x̂, t) =

∂x
∂t (x̂, t), the deformation tensor F(x̂, t) =

∂x
∂ x̂ (x̂, t), and its determinant

J (x̂, t) = det (F(x̂, t)). Using the relationship x = x(x̂, t), we also introduce the velocity in Eulerian coordinates:

v(x, t) = v̂(x̂, t). The symmetric part of the gradient is denoted by ϵ(v) =
∇v+(∇v)T

2 .
Let us now introduce a simple FSI model which consists of the incompressible Navier–Stokes equations for the

fluid (in Eulerian coordinates) and linear elasticity equations for the structure (in Lagrangian coordinates) (see Fig. 2).
For clarity, we start with the momentum equations for fluid and solid both in Eulerian coordinates:

ρ f Dt v f − ∇ · σ f = g f , in Ω f ,

and

ρs Dt vs − ∇ · σ s = gs, in Ωs .

Here σ f and σ s are the Cauchy stress tensors for fluid and structure, respectively. Here Dt v f and Dt vs are the material
derivatives.

On the interface Γ = ∂Ω f ∩ ∂Ωs , the interface conditions are given in Eulerian coordinates as

v f = vs and σ f n = σ sn on Γ . (1)

Note that we neglect some effects such as the surface tension in this model and thus the stress is continuous on
interface.

While we keep the Eulerian description for the fluid model, we use the Lagrangian description for the structure.
Accordingly, we introduce the following Sobolev spaces:

V := {(v f , v̂s) ∈ H1
D(Ω f (t)) × H1

D(Ω̂s) such that v f ◦ xs = v̂s, on Γ̂ }, (2)

where

H1
D(Ω f (t)) := {u ∈ (H1(Ω f (t)))

N
|u = 0, on ∂Ω ∩ ∂Ω f },

H1
D(Ω̂s) := {u ∈ (H1(Ω̂s))

N
|u = 0, on ∂Ω ∩ ∂Ω̂s},
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and

Q := L2(Ω f (t)).

V is defined for the fluid velocity in Eulerian coordinates and the structure velocity in Lagrangian coordinates. The
condition v f ◦ xs = v̂s is used to enforce continuity of velocity in (1). We will discuss the choice of norms for these
spaces in the next section.

In order to formulate the problem weakly, we use test functions defined on Ω , With the test function φ ∈ H1
0 (Ω),

we first write the weak form for the fluid and structure, respectively:
Ω f

ρ f Dt v f φdx +


Ω f

σ f : ϵ(φ)dx −


Γ

σ f n f · φdx =


Ω f

g f φdx,
Ωs

ρs Dt vsφdx +


Ωs

σ s : ϵ(φ)dx −


Γ

σ sns · φdx =


Ωs

gsφdx.

We add these two equations based on interface conditions (1):
Ω f

ρ f Dt v f φdx +


Ω f

σ f : ϵ(φ)dx +


Ωs

ρs Dt vsφdx +


Ωs

σ s : ϵ(φ)dx =


Ω f

g f φdx +


Ωs

gsφdx.

By a change of coordinates x = x(x̂, t), the stress term of structure part can be written in Lagrangian coordinates
Ωs

σ s : ϵ(φ)dx =


Ω̂s

σ̂ s : ∇x̂φ̂F−1 Ĵ d x̂ =


Ω̂s

(J σ̂ s F−T ) : ∇x̂φ̂dx̂,

where φ̂(x̂, t) = φ(x(x̂, t), t) and σ̂ s(x̂, t) = σ s(x(x̂, t), t). We also change the coordinates for the inertial term and
the body force term. Then, we get the following weak form of FSI:

Ω f

ρ f Dt v f φ + σ f : ϵ(φ)dx +


Ω̂s

ρ̂s∂t t ûs φ̂ + Ps : ∇φ̂d x̂ =


Ω f

g f φdx +


Ω̂s

J ĝsφdx̂, (3)

which holds for any φ ∈ V. Here, the density of the structure ρ̂s is defined as

ρ̂s(x̂, t) = J (x̂, t)ρs(x(x̂, t), t)

and Ps = J σ̂ s F−T is the first Piola–Kirchhoff stress. By the conservation of mass, ρ̂s is independent of t .
The variational formulation (3) holds for general fluid and structure models described by the Cauchy stresses σ f

and σs , respectively. We now make some specific choices for σ f and σs .
For the fluid, we use the incompressible Newtonian model, which is given by

σ f = 2µ f ϵ(v f ) − pI (4)

and

∇ · v f = 0.

For the structure, we use the linear elasticity model (for small deformations) in Lagrangian coordinates, which
corresponds to the following approximation:

Ps ≈ P̃s := µsϵ(ûs) + λs∇ · ûsI. (5)

Initial and boundary conditions. We consider the following Dirichlet boundary conditions:

v f = vD
f , on ∂Ω f ∩ ∂Ω ,

ûs = 0, on ∂Ωs ∩ ∂Ω ,

and initial conditions

ûs(0) = us,0, ∂t ûs(0) = us,1, v f (0) = v f,0.

In the rest of this paper, we do not rewrite the initial conditions in the weak formulations for brevity. Moreover, we
assume vD

f = 0. That is, there are only homogeneous Dirichlet boundary conditions for the fluid problem.
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Fig. 2. Computational domains of FSI.

Together with the continuity equation and interface condition, the weak formulation of FSI is as follows:
The weak formulation of FSI: Find v f , p and ûs such that for any given t > 0, the following equations hold for any
(φ, φ̂) ∈ V and q ∈ Q:

(ρ̂s∂t t ûs, φ̂)Ω̂s
+

ρ f Dt v f , φ


Ω f

+ (P̃s, ∇φ̂)Ω̂s
+ (σ f , ϵ(φ))Ω f = ⟨J ĝs, φ̂⟩ + ⟨g f , φ⟩,

(∇ · v f , q)Ω f = 0,

v f ◦ xs = ∂t ûs, on Γ̂ .

(6)

Remark. The solutions v f , p and ûs are in some specific function spaces that require sufficient regularity in the time
variable. Since the regularity in time variable is not discussed in this paper, we do not introduce these spaces in the
weak formulation.

3. Finite element discretization based on the ALE method

In this section, we consider both time and space discretizations of Eq. (6) and discuss the well-posedness. We first
discretize the time variable t with uniform time step size k:

tn
= nk, n = 0, 1, . . . ,

and use the finite difference method to discretize time derivatives. For the space–time formulation of FSI, we refer
to [37,38] and references therein.

Since the function spaces usually depend on t , we use the superscript n to indicate that the function space is at time
tn . For example,

Vn
:= {(v f , v̂s) ∈ H1

D(Ω f (t
n)) × H1

D(Ω̂s) such that v f ◦ xn
s = v̂s, on Γ̂ }.

We use an ALE approach for the discretization of spatial variable. In this approach, the structure domain is dis-
cretized by a fixed mesh on the initial domain Ω̂s and the fluid domain is discretized by a sequence of moving meshes
on the moving domain Ω f (t).

3.1. Time discretization

Time discretization for the structure domain. Without loss of generality, we consider for the time discretization of the
structure variables the following simple finite difference schemes:

(∂t ûs)
n+1

≈ (∂t,h ûs)
n+1

≡
ûn+1

s − ûn
s

k
,

(∂t t ûs)
n+1

≈ (∂t t,h ûs)
n+1

≡
ûn+1

s − 2ûn
s + ûn−1

s

k2 .

(7)

Other popular time discretization schemes such as the Newmark method [39] can also be used.
Time discretization for the fluid domain by moving meshes. We need to find a mapping to move the fluid mesh such
that it matches the structure displacement on Γ̂ and remains non-degenerate in Ω f as time evolves. This mapping
is a diffeomorphism in continuous case, and we use piecewise polynomials to approximate it in discrete case. For a
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Fig. 3. ALE mapping.

triangular mesh, only piecewise linear functions preserve the triangular shape of the elements in the mesh. In the rest
of this paper, we assume that the mesh motion is piecewise linear. We denote the image of Ω̂ f under the piecewise
linear map xh, f by Ωn

f . Ωn
f is discretized by a moving mesh with respect to time, denoted by Th(Ωn

f ). Note that Ωn
f

is a polygonal domain in 2D, and a polyhedral domain in 3D. Ωn
f is a result of numerical discretization, and is, in

general, different from the domain shape Ω f (tn) in the analytic solution of (6).
The technique we use to determine the mesh motion is the ALE method. First introduced for finite element

discretizations of incompressible fluids in [40,41], the ALE method provides an approach to finding the fluid mesh
that can fit the moving domain Ω f (t) (see Fig. 3).

There are two main ingredients in the ALE approach:

1. Defining how the grid is moving with respect to time such that it matches the structure displacement at the
fluid–structure interface.

2. Defining how the material derivatives are discretized on the moving grid.

Given the structure trajectory xn
s defined on Γ̂ , the moving grid can be described by a diffeomorphism An

: Ω̂ f →

Ω f that satisfies
An(x̂) = x̂, on ∂Ω̂ f ∩ ∂Ω̂ ,

An(x̂) = xn
s (x̂, t), on Γ̂ .

(8)

ALE mappings satisfying (8) are by no means unique. In the interior of Ω̂ f , the ALE mapping can be “arbitrary”.
One popular approach to uniquely determine A is to solve partial differential equations

LA = 0, in Ω̂ f .

A popular choice for the operator L is the Laplacian, L = −∆.
To improve the quality of the fluid mesh with respect to the displacement of the structure near the interface, the

following elasticity model is often used [42]

LA = −µ∆A − λ∇(∇ · A).

For more choices of formulating the ALE problem, we refer to [5,41] and references therein.
Discretization of the material derivative. With the ALE mapping A introduced, material derivatives can be written as
follows:

Dt v = ∂t v + (v · ∇)v
= ∂t v + (∂t A · ∇)v + ((v − ∂t A) · ∇)v
= ∂t v(A(x̂, t), t) + ((v − ∂t A) · ∇)v.

Using the simple approximation:

∂t v(A(x̂, tn+1), tn+1) ≈ ∂A
t,hv|(A(x̂,tn+1),tn+1) :=

v(A(x̂, tn+1), tn+1) − v(A(x̂, tn), tn)

k

and

(∂t A)(x̂, t) ≈ (∂t,h A)(x̂, t) :=
A(x̂, tn+1) − A(x̂, tn)

k
,

we obtain an approximation of material derivatives as follows:

(Dt v)n+1
≈ (Dt,hv)n+1

:= ∂A
t,hv(x, tn+1) + ((v − ∂t,h A) · ∇)v(x, tn+1), (9)

for x = A(x̂, tn+1).
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With the aforementioned discretization of material derivatives, we write the momentum equation of Navier–Stokes
equations as

ρ f ∂
A
t,hv f + ρ f ((v f − ∂t,h A) · ∇)v f − ∇ · σ f = g f .

Once the time derivatives are discretized using (7) and (9), we obtain the fully implicit scheme.

Fully implicit (FI) scheme: Find vn+1
f ∈ Vn+1

f , ûn+1
s ∈ V̂s , p ∈ Qn+1 and An+1

∈ H1(Ω̂ f ) such that for any

(φ, φ̂) ∈ Vn+1 and q ∈ Qn+1,

(ρ̂s(∂t t,h ûs)
n+1, φ̂)Ω̂s

+ (ρ f (Dt,hv f )
n+1, φ)Ω f + (σ n+1

f , ϵ(φ))Ω f

+ (P̃n+1
s , ∇φ̂)Ω̂s

= ⟨J ĝs, φ̂⟩ + ⟨g f , φ⟩,

(∇ · vn+1
f , q)Ω f = 0,

vn+1
f ◦ xn+1

s = (∂t,h ûs)
n+1, on Γ̂ ,

LAn+1
= 0, in Ω̂ f ,

An+1(x̂) = x̂, on ∂Ω̂ f ∩ ∂Ω̂ ,

An+1(x̂) = x̂ + ûn+1
s , on Γ̂ .

(10)

The structure displacement ûn+1
s serves as the boundary condition for the ALE problem. Note that An+1 has to be

a homeomorphism. The fluid stress σ n+1
f is defined by (4) in terms of vn+1

f and pn+1. The structure stress P̃n+1
s is

defined by (5) in terms of ûn+1
s .

In the FI scheme, nonlinearity comes from the convection term and the dependence of the Navier–Stokes (NS)
equations on the ALE mapping. To solve (10), Newton’s method or fixed-point iteration may be used to linearize the
problem.

Another frequently used linearization of the FI scheme is the following geometry-convective explicit scheme
[4,43,44].

Geometry-convective explicit (GCE) scheme: Find vn+1
f ∈ H1

D(Ω f (tn)), ûn+1
s ∈ H1

D(Ω̂s), p ∈ L2(Ω f (tn)) and

An+1
∈ H1(Ω̂ f ) such that for any (φ, φ̂) ∈ Vn and q ∈ Qn ,

(ρ f (∂
A
t,hv f )

n+1, φ)Ω f + (ρ̂s(∂t t,h ûs)
n+1, φ̂)Ω̂s

+ (σ n+1
f , ϵ(φ))Ω f

+ (P̃n+1
s , ∇(φ̂))Ω̂s

= ⟨g f − ((vn
f − ∂t,h An+1) · ∇)vn

f , φ⟩Ω f + ⟨J ĝs, φ̂⟩Ω̂s
,

(∇ · vn+1
f , q)Ω f = 0,

vn+1
f ◦ xn

h = (∂t,h ûs)
n+1, on Γ̂ ,

LAn+1
= 0, in Ω̂ f ,

An+1(x̂) = x̂, on ∂Ω̂ f ∩ ∂Ω̂ ,

An+1(x̂) = x̂ + ûn
s (x̂) + kvn

f ◦ xn
h(x̂), on Γ̂ .

(11)

The boundary condition for An+1 is given by ûn
s , the structure displacement, and vn

f , the fluid velocity, from the

previous time step. Thus, the solution of An+1 is decoupled from solving momentum and continuity equations. After
An+1 is solved, the mapping from Ω̂ f to Ω f (tn) is known and ∂t,h An+1 can be calculated. In (11), the convection
term is explicitly calculated using ∂t,h An+1 and vn

f

(vn+1
f − ∂t An+1) · ∇vn+1

f ≈ (vn
f − ∂t,h An+1) · ∇vn

f . (12)

The GCE scheme in the literature has the following linearization of the convection term [4,43,44]:

(vn+1
f − ∂t An+1) · ∇vn+1

f ≈ (vn
f − ∂t,h An+1) · ∇vn+1

f . (13)

We take (12) instead of (13) since the former results in symmetric variational problems and facilitates our analysis.
However, we also briefly discuss about the unsymmetric cases due to (13) in the next section.

Since the solution of An+1 is decoupled from momentum and continuity equations, we do not rewrite the equations
about A in the GCE scheme in the rest of the paper.
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Change of variables for structure equations
Note that the discretized interface condition for the velocity is

vn
f ◦ xn

s,h =
ûn

s − ûn−1
s

k
, on Γ̂ .

The velocities of fluid and structure are assumed to be continuous on the interface Γ̂ . By introducing the structure
velocity in the same fashion as in (7),

v̂n
s =

ûn
s − ûn−1

s

k
, (14)

the interface condition becomes

vn
f ◦ xn

s = v̂n
s , on Γ̂ .

Therefore, the unknowns v f and v̂s are continuous on Γ with a change of coordinates for v f and (vn
f , v̂n

s ) belongs
to the space Vn . Instead of ûs , we take v̂s as one of the unknowns since it facilitates our theoretical analysis in the
next section. We change the variables in the GCE scheme and get the modified GCE scheme:

Modified GCE scheme: Find (vn+1
f , v̂n+1

s ) ∈ Vn and p ∈ Qn such that ∀(φ, φ̂) ∈ Vn and ∀q ∈ Qn ,
1
k
(ρ f vn+1

f , φ)Ω f +
1
k
(ρ̂s v̂n+1

s , φ̂)Ω̂s
+ (σ n+1

f , ϵ(φ))Ω f

+ k(P̃s(v̂n+1
s ), ∇φ̂)Ω̂s

= ⟨g̃ f , φ⟩Ω f + ⟨g̃s, φ̂⟩Ω̂s
,

(∇ · vn+1
f , q)Ω f = 0,

(15)

where

g̃ f = g f − ((vn
f − ∂t,h An+1) · ∇)vn

f + ρ f vn
f /k

g̃s = J ĝs + ρ̂s v̂n
s /k − P̃s(ûn

s ).

P̃s(v̂n+1
s ) is in terms of v̂n+1

s instead of ûn+1
s ; that is,

P̃s(v̂n+1
s ) = µsϵ(v̂n+1

s ) + λs∇ · v̂n+1
s I.

3.2. Space discretization

The structure domain Ω̂s is discretized by a fixed triangulation, denoted by Th(Ω̂s). The corresponding finite ele-
ment space is defined as:

V̂h,s = {û ∈ H1
D(Ω̂s) : û|τ ∈ Pm, ∀τ ∈ Th(Ω̂s)}.

The fluid domain Ω f is moving over time due to the interaction. At time t = 0, we have the initial triangulation
Th(Ω̂ f ) on Ω̂ f . In this paper we only consider the case in which Th(Ω̂s) and Th(Ω̂ f ) are matching on the interface Γ̂ .

For t > 0, the fluid domain Ω f (t) evolves due to the motion of interface. Therefore, we discuss the discrete in-
terface motion first. The structure displacement us provides the motion of the interface. Note that us is in some finite
element space and, therefore, the displacement of the interface Γ is piecewise polynomial. This approximation of
interface motion introduces additional error, besides that of approximating velocity in H1 and pressure in L2 with
piecewise polynomials. Since only the triangular elements are considered in this paper, we use piecewise linear inter-
face motion, which transforms a triangular element to another triangular element. If higher order elements are used
for the structure displacement, like P2, interpolations have to be performed in order to get P1 interface motion. For
example, the interface motion of GCE scheme is approximated by

xn+1
s (x̂) ≈ x̂ + Π 1

h (ûn
s + kvn

f ◦ xn
h)(x̂), x̂ ∈ Γ̂ .

Here, Π 1
h is a interpolation operator, the range of which is the space of the continuous and piecewise linear functions.
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Discrete ALE problem. With the discrete boundary motion provided, we solve a discrete version of the ALE equations.
We only consider piecewise linear ALE mappings to keep the mesh triangular. Once we obtain the discrete ALE
mapping Ah , the fluid triangulation on the current configuration can be obtained. Denote the set of grid points for the
triangulation of Th(Ω̂ f ) by

N̂h = {x̂i ; i = 1 : nh}.

Then, the set of grid points for the triangulation of Th(Ωn
f ) is given by

N n
h = {xn

i = Ah(x̂i , tn)|i = 1 : nh, x̂i ∈ N̂h}.

Therefore, Th(Ωn
f ) is obtained accordingly. Since the grid points are moved according to Ah , we know that no inter-

polation is needed for evaluating the material derivative Dt v at grid points.
We define the finite element spaces for the fluid velocity and pressure on the triangulation Th(Ωn

f ):

Vn
h, f = {v ∈ H1

D(Ωn
f ) : v|τ ∈ Pm, ∀τ ∈ Th(Ωn

f )},

and

Qn
h = {q ∈ L2(Ωn

f ) : q|τ ∈ Pl , ∀τ ∈ Th(Ωn
f )},

where m and l denote the orders of finite elements.

Global finite element space. We define the finite element approximation of (2) as follows:

Vn+1
h := {(v f , v̂s) : v f ∈ Vn+1

h, f , v̂s ∈ V̂h,s, v f ◦ xn+1
h,s = v̂s, on Γ̂ }.

Note that the space is for both velocity unknowns and the test functions in the variational problem.

Modified GCE finite element scheme: Find (vn+1
f , v̂n+1

s ) ∈ Vn
h and p ∈ Qn

h such that for all (φ, φ̂) ∈ Vn
h and

q ∈ Qn
h ,

1
k
(ρ f vn+1

f , φ)Ω f +
1
k
(ρ̂s v̂n+1

s , φ̂)Ω̂s
+ (σ n+1

f , ϵ(φ))Ω f

+ k(P̃s(v̂n+1
s ), ∇φ̂)Ω̂s

= ⟨g̃ f , φ⟩Ω f + ⟨g̃s, φ̂⟩Ω̂s
,

(∇ · vn+1
f , q)Ω f = 0.

(16)

We note that GCE can be used in fixed-point iterations to achieve strong coupling with the fluid mesh motion. It can
also be used to construct semi-implicit schemes since it automatically couples fluid velocity and pressure with struc-
ture velocity. It is well-known that although fully implicit schemes are considered most stable, semi-implicit schemes
have much less computational cost and are stable for a wide range of problems. We refer to [16–18] for stability issues
of semi-implicit schemes.

Newton’s method can also be used to linearize the FI scheme [45], where shape derivatives have to be calculated.
However, we do not consider this type of nonlinear solvers in this paper.

There are many different approaches to enforce interface conditions. Many of them use Lagrange multipliers [4,46]
and this introduces additional degrees of freedom. An approach to avoiding Lagrange multipliers is to consider veloc-
ity and displacement in the entire domain [36,47,14]. The velocity in the structure domain is naturally the time deriva-
tive of structure displacement, while the displacement in the fluid domain is the mesh displacement [47]. In [17,28,29],
fluid velocity, pressure, and structure velocity are considered as unknowns. In our approach, we also use this velocity–
pressure formulation of FSI to facilitate our analysis.

In the next section, we start our theoretical analysis based on the formulation in (15) and (16).

3.3. Reformulation as a saddle point problem

For brevity, we do not keep the superscript n and we use Vh and Qh instead of Vn
h and Qn

h . In this section, we focus
on the linear systems resulting from (15) and formulate them as saddle point problems. For the space V, we assume
that xs = xh,s ; namely, xs in the definition of V is assumed to be piecewise linear on the triangulation Th(Ω̂s). As a
consequence, Vh is a subspace of V. Similarly, Qh ⊂ Q. For v ∈ V, we use v f and v̂s to denote its fluid and structure
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components, respectively. This convention applies to other functions in V, such as u = (u f , ûs) ∈ V and φ = (φ f , φ̂s)

∈ V. To guarantee the continuity of velocity on interface, we use polynomials of the same order for the fluid velocity
and structure velocity.

We introduce the following definition of the H1 norm for v = (v f , v̂s) ∈ V:

∥v∥
2
1 = ∥v f ∥

2
1,Ω f

+ ∥v̂s∥
2
1,Ω̂s

,

and define the following bilinear forms for v = (v f , v̂s) ∈ V, φ = (φ f , φ̂s) ∈ V and p ∈ Q

a(v, φ) =
1
k
(ρ f v f , φ f )Ω f +

1
k
(ρ̂s v̂s, φ̂s)Ω̂s

+ (µ f ϵ(v f ), ϵ(φ f ))Ω f

+ k(µsϵ(v̂s), ϵ(φ̂s))Ω̂s
+ k(λs∇ · v̂s, ∇ · φ̂s)Ω̂s

and

b(v, p) = (∇ · v f , p)Ω f .

In this paper, we assume the material parameters to be constant within the fluid domain and the structure domain.
With the bilinear forms defined, (15) can be reformulated as a saddle point problem:
Find v ∈ V and p ∈ Q such that

a(v, φ) + b(φ, p) = ⟨g̃, φ⟩, ∀ φ ∈ V,

b(v, q) = 0, ∀ q ∈ Q,
(17)

where ⟨g̃, φ⟩ = ⟨g̃ f , φ f ⟩ + ⟨g̃s, φ̂s⟩. This type of problems has various applications, for example in Stokes equations
and constrained optimization, and is well studied [48,49].

In order to study the well-posedness of this problem, we need to carefully define norms for V and Q as

for all v ∈ V, ∥v∥
2
V := a(v, v) + r∥∇ · v f ∥

2
0,Ω f

,

for all q ∈ Q, ∥q∥
2
Q := r−1

∥q∥
2
0,

where

r = max{1, µ f , ρ f k−1, ρ̂sk−1, kµs, kλs}. (18)

It is well-known that (17) is well-posed if the following conditions can be verified [49]

•

a(·, ·) is bounded and coercive in Z := {v ∈ V|∇ · v = 0 in Ω f }, (19)

•

b(·, ·) is bounded and satisfies the inf–sup condition

inf
p∈Q

sup
v∈V

b(v, p)

∥v∥V ∥p∥Q
≥ β > 0.

(20)

In the rest of the paper, we prove the boundedness and coercivity of a(·, ·) and the inf–sup condition of b(·, ·) in order
to show the well-posedness of saddle point problems, like (17).

We would like to emphasis here that the parameter r in the norms is crucially important for our analysis as well
as the construction of robust preconditioners. Without r , we cannot prove that the well-posedness is uniform. For
example, for the seemingly natural choice that r = 0 in the definition of ∥ · ∥V and r = 1 in the definition of ∥ · ∥Q ,
the boundedness and inf–sup condition of b(·, ·) can still be proved but will be parameter dependent and not uniform.

By definition, it is straightforward to prove the conditions on a(·, ·) since

a(v, v) = ∥v∥
2
V , ∀v ∈ Z. (21)

The boundedness of b(·, ·) follows from the definition:

b(v, q) ≤ ∥∇ · v∥0,Ω f ∥q∥0 ≤ r1/2
∥∇ · v∥0,Ω f r−1/2

∥q∥0 ≤ ∥v∥V ∥q∥Q . (22)
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Now, we need to prove the inf–sup condition of b(·, ·). First, we have the following lemma.

Lemma 1 ([50]). Let ∂ΩD ⊂ ∂Ω satisfy |∂ΩD| > 0 and |∂Ω \ ∂ΩD| > 0. Then there exists a constant C such that

sup
v∈H1

D(Ω)

(∇ · v, q)

∥v∥1,Ω
≥ C∥q∥0,Ω , for all q ∈ L2(Ω),

where H1
D(Ω) = {v ∈ H1(Ω)|v(x) = 0, for all x ∈ ∂ΩD}.

The following lemma is the key ingredient in proving the well-posedness of (17). In this case, the fluid domain
is deformed due to the motion of the structure. In the GCE scheme, xs is treated explicitly and the inf–sup constant
depends on xs .

Lemma 2. Assume that

xs ∈ W 1,∞(Ω̂s) and inf
x̂∈Ω̂s

det(∇xs(x̂)) > 0.

Then the following inf–sup condition holds

inf
q∈Q

sup
v∈V

b(v, q)

∥v∥1∥q∥0
&

1

d N/2+1
0 d1

,

where

d0 = max


sup
x̂∈Γ̂

∥∇xs(x̂)∥2, 1


, d1 = max


sup
x̂∈Γ̂


det(∇xs(x̂))−1


, 1


. (23)

Note that N = 2, 3 is the dimension of the FSI problem and ∥∇xs∥2 is the induced matrix 2-norm.

Proof. Based on Lemma 1, we know that with given q ∈ Q = L2(Ω f ), we can find

v f ∈ H1
D(Ω f ) = {v ∈ H1(Ω f ) and v|∂Ω f ∩∂Ω = 0}

such that

(∇ · v f , q)Ω f

∥v f ∥1,Ω f ∥q∥0,Ω f

& 1.

Then, we take v̂s ∈ H1
D(Ω̂s) satisfying v f ◦ xs = v̂s on Γ̂ and

Ω̂s

∇v̂s : ∇φ = 0, for all φ ∈ (H1
0 (Ω̂s))

N . (24)

Then, we know that v := (v f , v̂s) ∈ V and ∥v̂s∥1,Ω̂s
. ∥v̂s∥1/2,∂Ω̂s

.

The structure flow map xs maps from Γ̂ to Γ . xs is a diffeomorphism and we denote its inverse mapping by x̂ =

x̂s(x). By Nanson’s formula [5], the following inequality about surface elements ds and dŝ holds

dŝ(x̂s(x)) ≤ det(∇x̂s(x))∥(∇x̂s(x))−1
∥2ds(x)

= det(∇xs)
−1

|x̂=x̂s (x)∥∇xs |x̂=x̂s (x)∥2ds(x).

Given x, y ∈ Γ , |x − y| denotes the distance between x and y on Γ . It is easy to verify that

|xs(x̂) − xs(ŷ)| ≤ sup
ẑ∈Γ

∥∇xs(ẑ)∥2|x̂ − ŷ| ≤ d0|x̂ − ŷ|

and, accordingly,

dist(xs(x̂),Γ ) = inf
y∈Γ

|xs(x̂) − y| = inf
ŷ∈Γ̂

|xs(x̂) − xs(ŷ)| ≤ d0 inf
ŷ∈Γ̂

|x̂ − ŷ| = d0dist(x̂, Γ̂ ).
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The integral on the interface Γ̂ can be estimated as follows:

|v f ◦ xs |
2
H1/2

00 (Γ̂ )
=


Γ̂


Γ̂

|v f ◦ xs(x̂) − v f ◦ xs(ŷ)|2

|x̂ − ŷ|N dŝ(x̂)dŝ(ŷ) +


Γ̂

|v f ◦ xs(x̂)|2

dist(x̂, ∂Γ̂ )
dŝ(x̂)

=


Γ̂


Γ̂

|v f ◦ xs(x̂) − v f ◦ xs(ŷ)|2

|xs(x̂) − xs(ŷ)|N

|xs(x̂) − xs(ŷ)|N

|x̂ − ŷ|N dŝ(x̂)ds(ŷ)

+


Γ̂

|v f ◦ xs(x̂)|2

dist(xs(x̂), ∂Γ )

dist(xs(x̂), ∂Γ )

dist(x̂, ∂Γ̂ )
dŝ(x̂)

≤ d N
0


Γ̂


Γ̂

|v f ◦ xs(x̂) − v f ◦ xs(ŷ)|2

|xs(x̂) − xs(ŷ)|N dŝ(x̂)dŝ(ŷ) + d0


Γ̂

|v f ◦ xs(x̂)|2

dist(xs(x̂), ∂Γ )
dŝ(x̂)

≤ d N
0


Γ


Γ

|v f (x) − v f (y)|2

|x − y|N det(∇xs)
−2

∥∇xs∥
2
2ds(x)ds(y)

+ d0


Γ

|v f (x)|2

dist(x, ∂Γ )
det(∇xs)

−1
∥∇xs∥2ds(x)

≤ d N+2
0 d2

1


Γ


Γ

|v f (x) − v f (y)|2

|x − y|N ds(x)ds(y) + d2
0 d1


Γ

|v f (x)|2

dist(x, ∂Γ )
ds(x)

and

∥v f ◦ xs∥
2
L2(Γ̂ )

≤ d0d1∥v f ∥
2
L2(Γ )

.

Therefore,

∥v f ◦ xs∥
2
H1/2

00 (Γ̂ )
≤ d N+2

0 d2
1∥v f ∥

2
H1/2

00 (Γ )
.

Based on the intrinsic definition of the semi norm

|v f |
2
H1/2

00 (Γ )
=


Γ


Γ

|v f (x) − v f (y)|2

|x − y|N ds(x)ds(y) +


Γ

|v f |
2

dist(x, ∂Γ )
ds(x),

we know that [51]

|v f ◦ xs |1/2,∂Ω̂ f
=
∼ |v f ◦ xs |H1/2

00 (Γ̂ )
=
∼ |v̂s |1/2,∂Ω̂s

.

Then

∥v̂s∥
2
1,Ω̂s

. ∥v̂s∥
2
1/2,∂Ω̂s

. ∥v f ◦ xs∥
2
H1/2

00 (Γ̂ )
. d N+2

0 d2
1∥v f ∥

2
1/2,∂Ω f

. d N+2
0 d2

1∥v f ∥
2
1,Ω f

.

Therefore, we have

∥v∥
2
1 . d N+2

0 d2
1∥v f ∥

2
1,Ω f

and
(∇ · v f , q)Ω f

∥v∥1∥q∥0
&

1

d N/2+1
0 d1

.

This finishes the proof. �

With the inf–sup condition of b(·, ·) proved, the well-posedness of (17) is shown.

Theorem 1. Assume that at a given time step tn , there exist positive constants C0 and C1 such that

sup
x̂∈Γ̂

∥∇xs(x̂)∥2 ≤ C0, sup
x̂∈Γ̂


det(∇xs(x̂))−1


≤ C1,

where the positive constants C0 and C1 are independent of material parameters and time step sizes. Then, under the
norms ∥ · ∥V and ∥ · ∥Q , the variational problem (17) is uniformly well-posed with respect to material parameters and
time step sizes.
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Proof. We prove this theorem by verifying Brezzi’s conditions (19) and (20).
The boundedness and coercivity of a(·, ·) are shown by (21) and the boundedness of b(·, ·) is shown by (22).

Therefore, we only need to prove the inf–sup condition of b(·, ·).
Due to the choice of the parameter r , the following inequality holds:

∥v∥V . r1/2
∥v∥1,Ω , ∀v ∈ V. (25)

Based on Lemma 2, it indicates that

inf
q∈Q

sup
v∈V

(∇ · v, q)Ω f

∥v∥V ∥q∥Q
&

1

d N/2+1
0 d1

.

Since d0 ≤ max{C0, 1}, d1 ≤ max{C1, 1} and C0 and C1 are independent of material parameters and time step sizes,
the inf–sup constant is uniformly bounded below. Therefore, we have shown that (17) is uniformly well-posed with
respect to material parameters ρ f , ρ̂s , µ f , µs and λs and time step size k. �

Applications in unsymmetric cases
In the GCE scheme we are considering, convection terms are treated explicitly using (12). A more stable discretiza-

tion is to linearize convection terms by Newton’s method. This adds unsymmetric terms to the variational problem

c(u, v) =


Ω f

ρ f (w · ∇)u f · v f +


Ω f

ρ f (u f · ∇)z · v f ,

where w and z are functions obtained from previous iteration steps.
With the new term c(v, φ) added, the following variational problem is also well-posed under certain assumptions.
Find v ∈ V and p ∈ Q such that

a(v, φ) + c(v, φ) + b(φ, p) = ⟨ f̃ , φ⟩, ∀φ ∈ V,

b(v, q) = 0, ∀q ∈ Q.
(26)

The well-posedness of (26) requires the boundedness and coercivity of a(u, v) + c(u, v).
First we have

Ω f

ρ f (w · ∇)u f · v f ≤ C


kρ f

µ f

1/2

∥w∥∞∥u∥V ∥v∥V

and 
Ω f

ρ f (u f · ∇)z · v f ≤ k∥∇z∥∞∥u∥V ∥v∥V .

Then

c(u, v) ≤


C

kρ f /µ f

1/2
∥w∥∞ + k∥∇z∥∞


∥u∥V ∥v∥V . (27)

Assume k is small enough such that

C

kρ f /µ f

1/2
∥w∥∞ + k∥∇z∥∞ ≤ c0 < 1,

where 0 < c0 < 1 is a constant.
Then we have the boundedness and coercivity of a(u, v) + c(u, v)

a(u, u) + c(u, u) ≥ (1 − c0)∥u∥
2
V , ∀u ∈ V,

a(u, v) + c(u, v) ≤ (1 + c0)∥u∥V ∥v∥V , ∀u, v ∈ V.
(28)

The boundedness and the inf–sup condition of b(·, ·) are not affected by c(·, ·). Therefore, the well-posedness of
variational problem (26) follows based on standard arguments. (See Corollary 4.1 in [49].) We do not show the details
here. Although our study can be applied to unsymmetric case, we only deal with the symmetric cases in the rest of
this paper.

In the next section, we consider the well-posedness of the finite element problem (16).
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3.4. Well-posedness of finite element discretization

Since we have already assumed Vh ⊂ V and Qh ⊂ Q, (16) can be formulated as follows:
Find vh ∈ Vh and ph ∈ Qh such that

a(vh, φh) + b(φh, ph) = ⟨g̃, φh⟩, ∀φh ∈ Vh,

b(vh, qh) = 0, ∀qh ∈ Qh .
(29)

The well-posedness of this finite element problem can be proved with some additional assumptions.
The discrete kernel space is

Zh := {vh = (vh, f , v̂h,s) ∈ Vh |(∇ · vh, f , qh)Ω f = 0, for all qh ∈ Qh}.

As is pointed out in [52], for finite element spaces that do not satisfy Zh ⊂ Z, the uniform coercivity of a(·, ·) in
Zh cannot be guaranteed. In fact, if

r(∇ · v f , ∇ · v f )Ω f ≤ a(v, v), for all v ∈ Zh

holds uniformly with respect to r , then it implies that ∇ · v f = 0 in Ω f , i.e. v ∈ Z. However, most commonly
used finite element pairs do not satisfy Zh ⊂ Z. Although there are exceptions like P4–P3 in 2D, the choice is very
restricted. We propose two remedies for this issue: the first is to add a stabilization term to a(u, v) and the second is
to introduce a new norm for V.

3.4.1. Remedy 1: stabilized formulation for finite elements
The first remedy we propose is to add the stabilization term proposed in [52]

ã(u, v) = a(u, v) + r(∇ · u f , ∇ · v f )Ω f .

Then ã(u, v) is uniformly coercive in Vh since

ã(u, u) ≡ ∥u∥
2
V , ∀u ∈ Vh . (30)

The stabilization term r(∇ · u f , ∇ · v f )Ω f is one of the key ingredients in our formulation. This term has also been
used in [53] to stabilize Stokes equations and the effects of this term on discretization error and preconditioning of
the linear system are discussed. Another type of stabilization technique, the orthogonal subgrid scales technique,
is applied to FSI in [28,29] to stabilize the Navier–Stokes equations with equal-order velocity–pressure pairs (like
P1–P1). The stabilization parameters of this technique are determined by Fourier analysis in [54].

The new FEM problem is as follows:
Find vh ∈ Vh and ph ∈ Qh such that

ã(vh, φh) + b(φh, ph) = ⟨g̃, φh⟩, ∀φh ∈ Vh,

b(vh, qh) = 0, ∀qh ∈ Qh .
(31)

For this new formulation, we just need to prove the inf–sup conditions of b(·, ·) in order to show that it is well-
posed. Similar to Theorem 1, the inf–sup conditions of b(·, ·) also depend on xs . Note that xs is the solid trajectory and
is calculated based on the solid velocity calculated at previous time steps. Moreover, xs corresponds to mesh motion
and thus we assume that xs is piecewise linear on the triangulation.

Corollary 1. Assume that xs is continuous and satisfies

xs |τ ∈ P1, ∀τ ∈ Th(Ω̂s) and inf
x̂∈Ω̂s

det(∇xs) > 0,

and that the finite element pair (Vh, f , Qh) for the fluid variables satisfies that

inf
q∈Qh

sup
v f ∈Vh, f

(∇ · v f , q)Ω f

∥v f ∥1∥q∥0
& 1. (32)
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Then the following inf–sup condition holds

inf
q∈Qh

sup
v∈Vh

b(v, q)

∥v∥1∥q∥0
&

1

d N/2+1
0 d1

. (33)

Note that d0 and d1 are defined in (23).

Proof. Based on (32), we know that given any qh
∈ Qh , we can find vh

f ∈ Vh, f such that

(∇ · vh
f , qh)Ω f

∥vh
f ∥1

& ∥qh
∥0.

We take v̂h
s such that v̂h

s = vh
f ◦ xh

s on Γ̂ and
Ω̂s

∇v̂h
s : ∇φh = 0, ∀φh ∈ V0

h,s,

where V0
h,s := {v ∈ Vh,s |v = 0, on ∂Ω̂}. This discrete harmonic extension v̂h

s still satisfies

∥v̂h
s ∥1,Ω̂s

. ∥v̂h
s ∥1/2,∂Ω̂s

since v̂h
s is the projection of the continuous harmonic extension (see (24)) under the inner product (∇u, ∇v).

Then, take vh
= (vh

f , v̂h
s ) ∈ Vh . We know that

∥vh
∥

2
1 . d N+2

0 d2
1∥vh

f ∥
2
1

and, therefore, the following inequality holds

(∇ · vh, qh)Ω f

∥vh∥1
&

∥qh
∥0

d N/2+1
0 d1

.

This finishes the proof. �

With the inf–sup condition of b(·, ·) proved, the well-posedness of (29) follows.

Theorem 2. Assume that the assumptions in Corollary 1 hold and that at a given time step tn , there exist constants
C0 and C1 such that

sup
x̂∈Γ̂

∥∇xs(x̂)∥2 ≤ C0, sup
x̂∈Γ̂


det(∇xs(x̂))−1


≤ C1.

Moreover, assume that C0 and C1 are independent of material and discretization parameters. Then, under the norms
∥ · ∥V and ∥ · ∥Q the stabilized variational problem (31) is uniformly well-posed with respect to material and dis-
cretization parameters.

Proof. To prove this theorem we also verify Brezzi’s conditions.
The boundedness and coercivity of ã(·, ·) are obvious due to (30). The boundedness of b(·, ·) can be similarly

proved by (22). Corollary 1 proves

inf
q∈Qh

sup
v∈Vh

b(v, q)

∥v∥1∥q∥0
&

1

d N/2+1
0 d1

.

Since (25) still holds for v ∈ Vh , the following inf–sup condition is proved

inf
q∈Qh

sup
v∈Vh

b(v, q)

∥v∥V ∥q∥Q
&

1

d N/2+1
0 d1

.

Moreover, the inf–sup constant d−N/2−1
0 d−1

1 is uniformly bounded below due to d0 ≤ max{C0, 1} and d1 ≤ max
{C1, 1}. We have verified all the Brezzi’s conditions and all of the inequalities hold uniformly with respect to material
parameters ρ f , ρ̂s , µ f , µs and λs , time step size k and mesh size. Therefore, (29) is uniformly well-posed with respect
to material and discretization parameters. �



84 J. Xu, K. Yang / Comput. Methods Appl. Mech. Engrg. 292 (2015) 69–91

3.4.2. Remedy 2: a new norm for V
An equivalent form of the norm ∥ · ∥V is

for all u ∈ V, ∥u∥
2
VQ

:= a(u, u) + r∥PQ∇ · u f ∥
2
0,Ω f

,

where PQ is the L2 projection from L2(Ω f ) to Q. This norm was used in [34] to study the well-posedness of linearized
Navier–Stokes equations.

Note that this norm depends on the choice of space Q and we use the subscript VQ to emphasize that. For Q =

L2(Ω f ), we have ∥u∥V = ∥u∥VQ , for all u ∈ V. For the finite element pair (Vh, Qh), the norm is

∀u ∈ Vh, ∥u∥
2
VQ

= a(u, u) + r∥PQh ∇ · u f ∥
2
0,Ω f

.

With this new norm, we prove the well-posedness of the original finite element discretization (29) without adding
the stabilization term r(∇ · u f , ∇ · v f )Ω f .

Theorem 3. Assume that the assumptions in Theorem 2 hold. Then, under the norms ∥ · ∥VQ and ∥ · ∥Q the original
variational problem (29) is uniformly well-posed with respect to material and discretization parameters.

Proof. Note that under the new norm ∥ · ∥VQ , a(·, ·) is uniformly coercive in Zh . In fact,

for all u ∈ Zh, a(u, u) = ∥u∥
2
VQ

.

The boundedness of a(·, ·) is obvious. The boundedness of b(·, ·) is also easy to show:

b(v f , p) = (∇ · v f , p)Ω f ≤ ∥p∥0,Ω f sup
q∈Qh

(∇ · v f , q)Ω f

∥q∥0,Ω f

≤ ∥p∥Q∥v∥VQh
.

Since

∥v∥VQ . r1/2
∥v∥1,Ω

is still valid, the inf–sup conditions of b(·, ·) can be proved by using Corollary 1. This concludes our proof. �

We have provided two remedies in order to get uniformly well-posed finite element discretizations. In the next
section, we introduce how these stable formulations can help us find optimal preconditioners.

4. Solution of linear systems

In this section, we consider preconditioners for (29). Define Xh = Vh × Qh . The underlying norm is

∥(v, p)∥2
X = ∥v∥

2
V + ∥p∥

2
Q, (v, p) ∈ Xh .

Consider the following saddle point problem:
Find x ∈ Xh , such that

K (x, y) = ⟨g̃, y⟩, ∀y ∈ Xh, (34)

where g̃ ∈ X′

h . The operator form of (34) is

Kh x = g̃.

Under the assumption that (34) is uniformly well-posed, an optimal preconditioner can be found [30,31], which is
the Riesz operator Bh : X′

h → Xh defined by

(Bh f, y)X = ⟨ f, y⟩, ∀y ∈ Xh, f ∈ X′

h .

Thus, Bh satisfies

κ(Bh Kh) . 1.

The uniform boundedness of the condition number κ(Bh Kh) results in uniform convergence of Krylov subspace
methods, such as MINRES.
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4.1. Two optimal preconditioners for FSI

In the previous section, we have introduced two stable finite element formulations, which provide two optimal
preconditioners. To facilitate our discussion, we first introduce the block matrices Ah , Dh , Bh , defined by

(Ah ūh, v̄h) = a(uh, vh),
(Bh ūh, p̄h) = b(uh, qh),
(Dh ūh, v̄h) = (∇ · uh, f , ∇ · vh, f )Ω f ,

for any uh , vh ∈ Vh and ph ∈ Qh . ūh, v̄h and p̄h are the corresponding vector representations with given bases for Vh
and Qh . We also introduce the pressure mass matrix Mp.

Now, we introduce two optimal preconditioning strategies (M1) and (M2) based on the uniformly well-posed
formulations introduced in the previous section. Note that these two preconditioners are applied to (31) and (29),
respectively.

• Formulation 1 (M1): With the stabilization term added, (31) is uniformly well-posed under the norms ∥ · ∥V and
∥ · ∥Q . In this case, we first define

K 1(x, y) = ã(v, φ) + b(φ, p) + b(v, q),

where x = (v, p) and y = (φ, q). The FSI problem has the variational form

K 1(x, y) = ⟨g̃, y⟩, ∀y ∈ Xh,

and the operator form

K1
h x = g̃.

The optimal preconditioner B1
h in this case has the following matrix form:

Ah + r Dh 0

0
1
r

Mp

−1

. (35)

Corollary 2. Assume that the assumptions in Theorem 2 hold. Then κ(B1
h K1

h) is uniformly bounded with respect to
material and discretization parameters.

Proof. The proof follows from Theorem 2 and the standard argument in [30]. �

• Formulation 2 (M2): With the new norm ∥ · ∥VQ introduced, (29) is uniformly well-posed under the norms ∥ · ∥VQ

and ∥ · ∥Q . We first define

K 2(x, y) = a(v, φ) + b(φ, p) + b(v, q),

where x = (v, p) and y = (φ, q). The FSI problem in this case has the variational form

K 2(x, y) = ⟨g̃, y⟩, ∀y ∈ Xh,

and the operator form

K2
h x = g̃.

Given ph ∈ Qh and vh ∈ Vh satisfying ph = PQh (∇ · vh), we know that

Mp p̄h = Bh v̄h .

Therefore,

∥ph∥
2
0,Ω f

= p̄T
h Mp p̄h = v̄T

h BT
h M−1

p Bh v̄h .

Then we know that the corresponding optimal preconditioner B2
h in this case has the following block form:Ah + r DQ

h 0

0
1
r

Mp

−1

, (36)

where DQ
h := BT

h M−1
p Bh .
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Corollary 3. Assume that the assumptions in Theorem 3 hold. Then κ(B2
h K2

h) is uniformly bounded with respect to
material and discretization parameters.

Proof. The proof follows from Theorem 3 and the standard argument in [30]. �

4.2. Comparing B1
h , B2

h and the augmented Lagrangian (AL) preconditioner

The AL preconditioner was proposed for Oseen problems in [33] and has been extended to the Navier–Stokes
equations in [32,34]. The AL preconditioner is designed for saddle point problems of the following form:

A BT

B 0


u
p


=


f
0


. (37)

The AL preconditioner is applied to the modified saddle point problem
A + γ BT W −1 B BT

B 0


u
p


=


f
0


, (38)

and the ideal form of the AL preconditioner is

Pγ =

Aγ BT

0
1

ν + γ
W

−1

, (39)

where Aγ = A + γ BT W −1 B, ν is the kinematic viscosity, and the ideal choice of W is the pressure mass matrix Mp.
Note that (37) and (38) have the same solution.

Practical choices for the preconditioner Pγ are discussed extensively in the literature, though we do not discuss this
issue here. For the application to the Oseen problem [33], eigenvalue analysis shows that the preconditioned matrix has
all the eigenvalues tend to 1 as γ tends to ∞. In the application to linearized Navier–Stokes problem [34], it is shown
that for certain choices of the parameter γ , the convergence rate of AL-preconditioned GMRes is independent of
discretization and material parameters. Note that in these applications, convection terms are considered and, therefore,
the linear systems are not symmetric.

The AL preconditioning technique can also be applied to our FSI problem. By simply adding the term r(PQh ∇ ·

u f , ∇ · v f )Ω f to the first equation of (29), we get the following variational problem.
Find vh ∈ Vh and ph ∈ Qh such that

a(vh, φh) + r(PQh ∇ · u f , ∇ · v f )Ω f + b(φh, ph) = ⟨g̃, φh⟩, ∀φh ∈ Vh,

b(vh, qh) = 0, ∀qh ∈ Qh .
(40)

Based on this variational problem, we propose the third optimal preconditioning strategy (M3), which is very
similar to the AL preconditioner.

• Formulation 3 (M3): We define the following bilinear form for the saddle point problem (34)

K 3(x, y) = a(v, φ) + r(PQh ∇ · v f , ∇ · φ f )Ω f + b(φ, p) + b(v, q),

where x = (v, p) and y = (φ, q). The FSI problem for M3 has the variational form

K 3(x, y) = ⟨g̃, y⟩, ∀y ∈ Xh,

and the operator form

K3
h x = g̃.

The optimal preconditioner in this case is also B2
h .

Corollary 4. Assume that the assumptions in Theorem 3 hold. Then κ(B2
h K3

h) is uniformly bounded with respect to
material and discretization parameters.
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Table 1
Compare M1–M3 and SC.

Preconditioner Stiffness matrix

M1

Ah + r Dh 0

0
1
r

Mp

−1 
Ah + r Dh BT

h
Bh 0



M2

Ah + r DQ
h 0

0
1
r

Mp

−1 
Ah BT

h
Bh 0



M3

Ah + r DQ
h 0

0
1
r

Mp

−1 
Ah + r DQ

h BT
h

Bh 0



SC


Ah 0
0 Bh A−1

h BT
h

−1 
Ah BT

h
Bh 0



Proof. We only need to prove that (40) is uniformly well-posed. The rest of the proof follows from the standard
argument in [30].

Since

a(u, u) + r(PQh ∇ · u f , ∇ · u f )Ω f = ∥u∥
2
VQ

, ∀u ∈ Vh,

we know that a(u, u)+r(PQh ∇ ·u f , ∇ ·u f )Ω f is uniformly bounded and coercive. The boundedness and the inf–sup
condition of b(·, ·) still hold according to Theorem 3. Therefore, the uniform well-posedness of (40) is proved. �

By using B2
h in an upper triangular fashion, it becomes quite similar to the AL preconditioner. Therefore, our anal-

ysis can also provide justification for the AL-type preconditioner for FSI in the absence of the convection term. Note
that the choice of parameters (in terms of r ) in (36) is different from those used in AL preconditioners in the literature.

We compare the preconditioning techniques (M1)–(M3) in Table 1. All of these three preconditioners are similar
to the velocity Schur complement preconditioners. For comparison, we also list a pressure Schur complement (SC)
preconditioner in Table 1.

Note that in the pressure Schur complement preconditioner (SC), we use the inverse of the diagonal part of Ah to
approximate A−1

h .
We would like to make the following clarifications on these preconditioning techniques.

1. Adding the term r(∇ · u f , ∇ · v f )Ω f to the continuous problem (17) does not change the solution. But adding it
may change the solution of finite element discretized problems; thus, (29) and (31) may have different solutions,
especially when r is large. In comparison, M2 and M3 do not change the solutions of finite element problems. In
particular, M2 solves exactly the original linear systems without any stabilization.

2. For M2 and M3, the preconditioners are the same but the discretization schemes are different.
3. M1–M3 are all proven to be optimal for FSI based on our analysis.

For the practical implementation, the performance of these preconditioners also depends on the efficiency of invert-
ing the diagonal blocks, such as Ah + r Dh and Mp. The mass matrix Mp is easy to invert by iterative methods. The
velocity block Ah is symmetric positive definite for the FSI problem; The Krylov subspace method preconditioned
by multigrid is usually one of the most efficient solvers. There are, however, still some difficulties that need special
consideration.

1. The block Ah +r Dh has contribution from the stabilization term r(∇ ·u, ∇ ·v)Ω f . r Dh becomes dominating if k is

small. Moreover, Dh is singular. For Ah + r DQ
h , the situation is similar. Special techniques have to be used to deal

with this type of problems. We refer to [55,56,33,57] for related discussion. In particular, nearly singular problems
of the following form were studied in [57]

Find u, s.t. Au = (A0 + ϵ A1)u = b.

Here A0 is a positive semi-definite matrix and A1 is a positive definite matrix. As ϵ → 0, the problem becomes
nearly singular. The subspace correction method proposed in [57] suggests that if the space decomposition V =
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Fig. 4. The domain for the jump-coefficient problem.

Fig. 5. FSI benchmark problem.J
j=1 V j satisfies

N (A0) =

J
j=1

[V j ∩ N (A0)],

then the subspace correction method converges uniformly with respect to ϵ. This observation provides the motiva-
tion to find solver-friendly discretization for which the near-null space can be easily identified and locally resolved.

It is well-known that the discrete kernels of divergence operator associated with most stable Stokes elements
have locally supported basis [48,58,56,59,33]. As a result, robust preconditioners based on appropriate overlapping
Schwarz methods can be developed, see e.g. [56].

2. The different scales of the fluid and structure problems result in large jumps in coefficients. For example, the ma-
terial parameters µs and µ f can differ greatly in magnitude. This leads to the following general jump-coefficient
problem:

Find u ∈ H1
0 (Ω) such that a(u, v) = ⟨ f, v⟩, for all v ∈ H1

0 (Ω),

where a(u, v) = (α(x)ϵ(u), ϵ(v))+(β(x)∇·u, ∇·v)+(γ (x)u, v). The domain Ω̄ = Ω̄1∪Ω̄2 is illustrated in Fig. 4.
The coefficients α(x), β(x) and γ (x) are piecewise positive constants on Ωi (i = 1, 2). The question is how to

design solvers that are robust with respect to the jumps of α(x), β(x) and γ (x). There is much research work on
solving jump-coefficient problems. We refer to [60,61] and the references therein for related discussions. In partic-
ular, in the recent work [61], second order linear reaction–diffusion equations with piecewise-constant coefficients
are studied.

4.3. Numerical examples

In this section, we present some numerical experiments in order to verify our analysis. Preconditioning techniques
M1–M3 and the SC preconditioner are tested.

We use the data from the FSI benchmark problem in [36]. Note that this is a 2D problem. The FSI code is imple-
mented in the framework of FEniCS [62]. The computational domain is shown in Fig. 5. We have an elastic beam in a
channel, where the inflow comes from the left end of the domain. We prescribe zero Dirichlet boundary conditions on
the top and the bottom of the channel. On the right end we use stress free boundary condition. We have chosen P2–P0
as the finite element spaces for the fluid part of the FSI system in our numerical experiments, but we expect that the
choice of other stable elements will lead to similar numerical performance.

We use three meshes with different sizes. Numbers of degrees of freedom for these meshes are shown in Table 2.
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Table 2
DoFs of the meshes.

Mesh 1 Mesh 2 Mesh 3

DoF 14,698 39,836 158,488

Table 3
Number of iterations for preconditioned MINRES for different time step sizes (k = 0.01, 0.001, 0.0001).

Preconditioner k = 0.01 k = 0.001 k = 0.0001
M1 M2 M3 SC M1 M2 M3 SC M1 M2 M3 SC

mesh 1 9 6 11 37 9 6 11 25 8 7 11 23
mesh 2 9 6 11 59 9 7 11 28 7 7 11 23
mesh 3 9 6 11 132 8 7 11 48 9 5 12 29

Table 4
Number of iterations for preconditioned MINRES for varying density ratios.

Preconditioner ρ̂s = ρ f ρ̂s = 10ρ f ρ̂s = 100ρ f
M1 M2 M3 SC M1 M2 M3 SC M1 M2 M3 SC

mesh 1 15 8 15 43 9 6 11 37 7 5 9 35
mesh 2 14 8 15 68 9 6 11 59 7 6 9 58
mesh 3 13 8 15 132 9 6 11 132 8 6 9 117

The values of the parameter r in M1–M3 are the same and are calculated by (18). Preconditioned MINRES is
used to solve the linear systems. M1–M3 are all block diagonal preconditioners. Each of the diagonal blocks is solved
exactly. The iteration of MINRES stops when the relative residual has magnitude less than 10−8.

In Table 3, we test the preconditioners for different meshes and time step sizes. In Table 4, we show the test results
for different meshes and density ratios.

From the data we see that the convergence of preconditioned MINRES for M1–M3 is almost uniform and quite
robust for different mesh sizes, time step sizes, and density ratios. The case with SC shows dependence on mesh sizes
and the dependence becomes more significant when the time step size k grows.

Concluding remarks

In this paper, we formulate the FSI discretized system as saddle point problems. Under mild assumptions, the uni-
form well-posedness of the saddle point problems is shown. By adding a stabilization term or adopting a new norm for
velocity, the finite element discretization of the FSI problem is also proved to be uniformly well-posed. Two optimal
preconditioners are proposed based on the well-posed formulations. Our theoretical framework also provides an alter-
native justification for the AL-type preconditioners in the absence of the convection term. In the numerical examples,
we show the robustness of these preconditioners. We use direct solves for the sub-blocks. In practice, these sub-blocks
have to be inverted by iterative methods when their sizes are large. Robust preconditioners for the sub-blocks have to
be considered.
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