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Abstract In this paper we construct Discontinuous Galerkin approximations of the Stokes
problem where the velocity field is H(div,�)-conforming. This implies that the velocity
solution is divergence-free in the whole domain. This property can be exploited to design a
simple and effective preconditioner for the final linear system.
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1 Introduction

In this paper we present a preconditioning strategy for a family of discontinuous Galerkin
discretizations of the Stokes problem in a domain � ⊂ R

d , d = 2, 3:

{−div(2νε(u))+ ∇ p = f in �
div u = 0 in �

(1.1)
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where, with the usual notation, u is the velocity field, p the pressure, ν the viscosity of the
fluid, and ε(u) ∈ [L2(�)]d×d

sym is the symmetric (linearized) strain rate tensor defined by

ε(u) = 1
2 (∇u + (∇u)T ).

The methods considered here were introduced in [40] for the Stokes problem and in [21]
for the Navier-Stokes equations when pure Dirichlet boundary conditions are prescribed.
In both works, the authors showed that the approximate velocity field is exactly divergence-
free, namely it is H(div;�)-conforming and divergence-free almost everywhere. These same
methods were also used in [25].

Numerical methods that preserve divergence free condition exactly are important from
both practical and theoretical points of view. First of all, it means that the numerical method
conserves the mass everywhere, namely, for any D ⊂ � we have

∫
∂D

u · n = 0.

As an example of its theoretical importance, the exact divergence free condition plays a
crucial view for the stability of the mathematical models (see [30]) and their numerical
discretizations (see [28]) for complex fluids.

The focus of this paper is to develop new solvers for the resulting algebraic systems for
this type of discretization by exploring the divergence-free property. In general, the numerical
discretization of the Stokes problem produces algebraic linear systems of equations of the
saddle-point type. Solving such algebraic linear systems has been the subject of considerable
attention from various communities and many different approaches can be used to solve them
efficiently (see [22] and references cited therein). One popular approach is to use a block
diagonal preconditioner with two blocks: one containing the inverse or a preconditioner of
the stiffness matrix of a vector Poisson discretization, and one containing the inverse of a
lumped mass matrix for the pressure. This preconditioner when used in conjunction with
MINRES (MINimal RESidual) leads to a solver which is uniformly convergent with respect
to the mesh size.

While the existing solvers such as this diagonal preconditioner can also be used for these
DG methods, in this paper, we would like to explore an alternative approach by taking the
advantage of the divergence-free property. Our new approach reduces the solution of the
Stokes systems (which is indefinite) to the solution of several Poisson equations (which are
symmetric positive definite) by using auxiliary space preconditioning techniques, which we
hope would open new doors for the design of algebraic solvers for PDE systems that involve
subsystems that are related to the Stokes operator.

In [21,40] the classical Stokes operator is considered for the special case of purely homo-
geneous Dirichlet boundary conditions (no-slip Dirichlet’s condition). While this special case
is theoretically important, it does not model well most of the cases that occur in the engi-
neering applications (for instance, it is not realistic in applications in immiscible two-phase
flows, aeronautics, in weather forecasts or in hemodynamics). For the pure homogenous
no-slip Dirichlet boundary conditions, we have the following identity

∫
�

ε(u) : ε(v) =
∫
�

∇u : ∇v.

when u and v vanish on the boundary of �. This identity can be used when deriving the
variational formulation, thus leading to simplifications of the analysis in the details related
to the Korn’s inequality on the discrete level.
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To extend the results in [21,40] to this different boundary condition we provide detailed
analysis showing that the resulting DG-H(div;�)-conforming methods are stable and con-
verge with optimal order. Furthermore, a key feature of the DG-H(div;�)-conforming
schemes of providing a divergence-free velocity approximation is satisfied as in [21,40],
by the appropriate choice of the discretization spaces. This property is fully exploited in
designing and constructing efficient preconditioners and we reduce the solution of the Stokes
problem to the solution of a “second-order” problem in the space curl H1

0 (�).
We propose then a preconditioner for the solution of the corresponding problem in

curl H1
0 (�). This is done by means of the fictitious space [33,34] (or auxiliary space [35,41])

framework. The proposed preconditioner amounts to the solution of one vector and two scalar
Laplacians. The solution of such systems can then be efficiently computed with classical
approaches, for instance the Geometric Multigrid (GMG) or Algebraic Multigrid (AMG)
methods.

Throughout the paper, we use the standard notation for Sobolev spaces [1]. For a bounded
domain D ⊂ R

d , we denote by Hm(D) the L2-Sobolev space of order m ≥ 0 and by ‖ ·‖m,D

and | · |m,D the usual Sobolev norm and seminorm, respectively. For m = 0, we write L2(D)
instead of H0(D). For a general summability index p, we also denote by W m,p(D) the
usual L p-Sobolev spaces of order m ≥ 0 with norm ‖ · ‖m,p,D and seminorm | · |m,p,D . By
convention, we use boldface type for the vector-valued analogues: Hm(D) = [Hm(D)]d ,
likewise, we use boldface italics for the symmetric-tensor-valued analogues: Hm(D) :=
[Hm(D)]d×d

sym . Hm(D)/R denotes the quotient space consisting of equivalence classes of
elements of Hm(D) that differ by a constant; for m = 0 the quotient space is denoted by
L2(D)/R. We indicate by L2

0(D) the space of the L2(D) functions with zero average over D
(which is obviously isomorphic to L2(D)/R). We use (· , ·)D to denote the inner product in
the spaces L2(D), L2(D), and L2(D).

2 Continuous Problem

In this section, we discuss the well posedness of the Stokes problem which is of interest.
We remark that the results in the paper are valid in two and three dimensions, although to
make the presentation more transparent we focus on the two dimensional case, discussing
only briefly the main changes (if any) needed to carry over the results to three dimensions.

We begin by restating (for reader’s convenience) the equations already given in (1.1)
with a bit more detail regarding the boundary conditions. For a simply connected polyhedral
domain � ⊂ R

d , d = 2, 3 with boundary � = ∂�, we consider the Stokes equations for a
viscous incompressible fluid:{

−div(2νε(u))+ ∇ p = f in �

div u = 0 in �
(2.1)

On the boundary � we impose kinematic boundary condition

u · n = 0 on �, (2.2)

together with the natural condition on the tangential component of the normal stresses

((2 ν ε(u)− pI)n) · t = 0 on �, (2.3)

where I is the identity tensor. Note that as n · t ≡ 0 then (2.3) is reduced to

(ε(u)n) · t = 0 on �. (2.4)
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When the space

H1
0,n(�) = {v ∈ H1(�) : v · n = 0 on � } (2.5)

is introduced, the variational formulation of the Stokes problem reads: Find (u, p) ∈
H1

0,n(�)× L2(�)/R as the solution of:
{

a(u, v)+ b(v, p) = ( f , v) ∀ v ∈ H1
0,n(�)

b(u, q) = 0 ∀ q ∈ L2(�)/R
(2.6)

where for all u ∈ H1
0,n(�), v ∈ H1

0,n(�) and q ∈ L2(�)/R the (bi)linear forms are defined
by

a(u, v) := 2ν
∫
�

ε(u) : ε(v) dx, b(v, q) := −
∫
�

q div v dx, ( f , v) :=
∫
�

f · v dx .

For the classical mathematical treatment of the Stokes problem (where the Laplace operator
is used instead of the divergence of the stress tensor ε(u)) existence and uniqueness of
the solution (u, p) are very well known and have been reported with different boundary
conditions in many places (see for instance [23,24,27,38]). The Stokes problem considered
here (2.1), (2.2), (2.3) has been derived and used in different applications [26,39,42].

For the Stokes problem with the slip boundary conditions (2.2), (2.3), existence, unique-
ness and interior regularity was first established in [37] (for even the more general linearized
Navier-Stokes). The study of well-posedness and regularity up to the boundary for the solu-
tions of this problem has received substantial attention only in very recent years. For example,
analysis can be found in [3,10] for weak and strong solutions in the H1(�) × L2(�) and
W 1,p(�)× L p(�), 1 < p < ∞. In these works it is assumed that the boundary of � is at
least of class C1,1(�) and the more general boundary condition of Navier slip-type is studied.
In [4], the authors provide the analysis in the W 1,p(�)× L p(�), 1 < p < ∞ for less regular
domains.

Here, for the sake of completeness, we provide a very brief outline of the proof of well-
posedness of the problem, in the case � is a polygonal or polyhedral domain (which is the
relevant case for the numerical approximation we have in mind). By introducing the operator
D0 = −div : H1

0,n(�) −→ L2
0(�), it can be shown [14,38] that D0 is surjective, i.e., Range

(D0) = L2
0(�). Therefore, the operator D0 has a continuous lifting which implies that the

continuous inf-sup condition is satisfied. Hence, from the classical theory follows that to
guarantee the well-posedness of the Stokes problem (2.1), (2.2), it is enough to show that the
bilinear form a(·, ·) is coercive; ie., there exists γ0 > 0 such that

a(v, v) ≥ γ0|v|21,� ∀ v ∈ H1
0,n(�). (2.7)

Once continuity is established, existence, uniqueness and a-priori estimates follow in a stan-
dard way. The proof of (2.7) requires a Korn inequality, that in general imposes some restric-
tions on the domain (see Remark 2.3). For the case considered in this work the needed result
is contained in next Lemma:

Lemma 2.1 Let � ⊂ R
d , d = 2, 3 be a polygonal or polyhedral domain. Then, there exists

a constant CK n > 0 (depending on the domain through its diameter and shape) such that

|v|21,� ≤ CK n‖ε(v)‖2
0,�, ∀ v ∈ H1

0,n(�). (2.8)

To prove the above Lemma, we first need the following auxiliary result
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Lemma 2.2 For every polygonal or polyhedral domain � there exists a positive constant
κ(�) such that

κ(�)‖η‖2
0,� ≤ ‖η · n‖2

0,∂� ∀η ∈ RM(�) (2.9)

where RM(�) is the space of rigid motions on � defined by

RM(�) =
{

a + bx : a ∈ R
d b ∈ so(d)

}

with so(d) denoting the set of skew-symmetric d × d matrices, d = 2, 3.

Proof To ease the presentation we provide the proof only in two dimensions. The extension
to three dimensions involve only notational changes and therefeore it is ommitted. To show
the lemma we observe that a polygon contains always at least two edges not belonging to the
same straight line. A rigid movement whose normal component vanishes identically on those
two edges is easily seen to be identically zero. This implies that for c ≡ (c1, c2, c3) ∈ R

3 on
the (compact) manifold ∫

�

|(c1 − c3x2, c2 + c3x1)|2 dx = 1

the function

c →
∫
∂�

|(c1 − c3x2, c2 + c3x1) · n|2 ds (2.10)

(which is obviously continuous) is never equal to zero. Hence it has a positive minimum, that
equals the required κ(�). ��

As a direct consequence of last Lemma, we can now provide the proof of the desired Korn
inequality given in Lemma 2.1.

Proof (Proof of Lemma 2.1.)
For every v ∈ H1

0,n(�) we consider first its L2 projection vR on the space RM(�) of
rigid motions and the projection v⊥ := v − vR on the orthogonal subspace. As v · n = 0 on
∂� we obviously have

vR · n = −v⊥ · n. (2.11)

Moreover, as v⊥ is orthogonal to rigid motions we have

|v⊥|21,� ≤ CK ‖ε(v)⊥‖2
0,� (2.12)

for some constant CK (note that the rigid motions include the constants, so that Poincaré
inequality also holds for v⊥). On the other hand, since RM(�) is finite dimensional we have
obviously

|vR |21,� ≤ CP‖vR‖2
0,� (2.13)

that using (2.9) gives

|vR |21,� ≤ CP

κ(�)
‖vR · n‖2

0,∂� (2.14)
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and using also (2.11) and (2.12)

1

2
|v|21,� ≤ |vR |21,� + |v⊥|21,� ≤ CP

κ(�)
‖vR · n‖2

0,∂� + |v⊥|21,�

= CP

κ(�)
‖v⊥ · n‖2

0,∂� + |v⊥|21,� ≤ CT CP

κ(�)
|v⊥|21,�

≤ CT CP CK

κ(�)
‖ε(v⊥)‖2

0,� = CT CP CK

κ(�)
‖ε(v)‖2

0,�

(2.15)

where the constant CT depends on the trace inequality on�. Defining now CK n = 2CT CP CK
κ(�)

we conclude the proof. ��

Remark 2.3 The proof of Lemma 2.1 relies on the assumption that the domain is polygonal
or polyhedral. For more general smooth bounded domains, the Korn inequality (2.8) is still
true, as long as the domain is assumed to be not rotationally symmetric. Otherwise a Korn
inequality can be established by restricting the solution space (see the Appendix in [29] for
further details).

3 Abstract Setting and Basic Notations

Let Th be a shape-regular family of partitions of � into triangles T in d = 2 or tetrahedra in
d = 3. We denote by hT the diameter of T , and we set h = maxT ∈Th hT . We also assume
that the decomposition Th is conforming in the sense that it does not contain any hanging
nodes.

We denote by Eh the set of all edges/faces and by Eo
h and E∂h the collection of all interior

and boundary edges, respectively.
For s ≥ 1, we define

Hs(Th) = {
φ ∈ L2(�) , such that φ

∣∣
T ∈ Hs(T ), ∀ T ∈ Th

}
,

and their vector Hs(Th) and tensor Hs(Th) analogues, respectively. For scalar, vector-valued,
and tensor functions, we use (· , ·)Th to denote the L2(Th)-inner product and 〈· , ·〉Eh to denote
the L2(Eh)-inner product elementwise.

The vector functions are represented column-wise. We recall the definitions of the fol-
lowing operators acting on vectors v ∈ H1(�) and on scalar functions φ ∈ H1(�) as

div v =
d∑

i=1

∂vi

∂xi

curl v = ∂v2

∂x1
− ∂v1

∂x2
curlφ = ∇⊥φ :=

[
∂φ

∂x2
,− ∂φ

∂x1

]T

(d = 2)

curl v = ∇ × v =
[
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

]T

(d = 3)
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and, we recall the definitions of the spaces to be used herein:

H(div;�) := {v ∈ L2(�) : div v ∈ L2(�) }, d = 2, 3,

H(curl;�) := {v ∈ L2(�) : curl v ∈ L2(�) } d = 2,

H(curl;�) := {v ∈ L2(�) : curl v ∈ L2(�) } d = 3 .

H0,n(div;�) := {v ∈ H(div;�) : v · n = 0 on � },
H0,t (curl;�) := {v ∈ H(curl;�) : v × n = 0 on � },
H0,n(div0;�) := {v ∈ H0,n(div;�) : div v = 0 in � }.

The above spaces are Hilbert spaces with the norms

‖v‖2
H(div,�) := ‖v‖2

0,� + ‖div v‖2
0,� ∀ v ∈ H(div;�) ,

‖v‖2
H(curl,�) := ‖v‖2

0,� + ‖curl v‖2
0,� ∀ v ∈ H(curl;�).

‖v‖2
H(curl,�) := ‖v‖2

0,� + ‖curl v‖2
0,� ∀ v ∈ H(curl;�) .

Remark 3.1 It is worth noting that if we restrict our analysis to vectors u and v in H1(�) ∩
H0,n(div0;�) then problem (2.6) becomes: Find u ∈ H1(�)∩ H0,n(div0;�) as the solution
of:

a(u, v) = ( f , v) ∀ v ∈ H1(�) ∩ H0,n(div0;�). (3.1)

As is usual in the DG approach, we now define some trace operators. Let e ∈ Eo
h be an

internal edge/face of Th shared by two elements T 1 and T 2, and let n1 (resp. n2) denote the
unit normal on e pointing outwards from T 1 (resp. T 2). For a scalar function ϕ ∈ H1(Th), a
vector field τ ∈ H1(Th), or a tensor field τ ∈ H1(Th) we define the average operator in the
usual way (see for instance [5]), that is, on internal edges/faces

{ϕ} = 1

2
(ϕ1 + ϕ2), {v} = 1

2
(v1 + v2), {τ } = 1

2
(τ 1 + τ 2).

However, on a boundary edge/face, we take {ϕ}, {v}, and {τ } as the trace of ϕ, v, and
τ ,respectively, on that edge.

For a scalar function ϕ ∈ H1(Th), the jump operator is defined as

[[ϕ ]] = ϕ1n1 + ϕ2n2 on e ∈ Eo
h , and [[ϕ ]] = ϕn on e ∈ E∂h

(where obviously n is the outward unit normal), so that the jump of a scalar function is a
vector in the normal direction.

For a vector field v ∈ H1(Th), following, for example, [8], the jump is the symmetric
matrix-valued function given on e by

[[v]] = v1 � n1 + v2 � n2 on e ∈ Eo
h , and [[v]] = v � n on e ∈ E∂h ,

where v�n = (vnT +nvT )/2 is the symmetric part of the tensor product of v and n. Hence,
the jump of a vector-valued function is a symmetric tensor.

If we denote by nT the outward unit normal to ∂T , it is easy to check that

∑
T ∈Th

∫
∂T

v · nT q ds =
∑
e∈Eh

∫
e

{v} · [[ q ]] ds ∀ v ∈ H1(Th) , ∀ q ∈ H1(Th). (3.2)
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Also for τ ∈ H1(�) and for all v ∈ H1(Th), we have
∑

T ∈Th

∫
∂T

(τnT ) · v ds =
∑
e∈Eh

∫
e

{τ } : [[v]] ds. (3.3)

3.1 Discrete Spaces: General Framework

We present three choices for each of the finite element spaces V h and Qh to approximate
velocity and pressure, respectively. For each choice, we also need an additional space Nh

(resp. N h in d = 3) made of piecewise polynomial scalars and of piecewise polynomial
vectors in three dimensions, to be used as a sort of potentials or vector potentials. We will
explain the reason for doing this and the way in which to do this later on. Note, too, that we will
use this space more heavily in the construction of our preconditioner. The different choices
for the spaces V h,Qh , and Nh or N h rely on different choices of the local polynomial spaces
R(T ),S(T ), and M(T ) or M(T ), respectively, made for each element T . Specifically, we
have

V h : = {v ∈ H(div;�) : v|T ∈ R(T ) ∀ T ∈ Th, v · n = 0 on �} , (3.4)

Qh := {
q ∈ L2(�)/R : q|T ∈ S(T ) ∀ T ∈ Th

}
, (3.5)

and

Nh := {
ϕ ∈ H1

0 (�) : ϕ|T ∈ M(T ) ∀ T ∈ Th
}

for d = 2, and (3.6)

N h := {v ∈ H(curl;�) : v|T ∈ M(T ) ∀ T ∈ Th v × n = 0 on �} for d = 3. (3.7)

The three spaces V h, Qh , and Nh (or N h) will always be related by this exact sequences:

0 −→ Nh
curl−→ V h

div−→ Qh −→ 0. (3.8)

in two dimensions, and

0 −→ N h
curl−→ V h

div−→ Qh (3.9)

in three dimensions. It is also necessary for each operator in (3.8) and (3.9) to have a con-
tinuous right inverse whose norm is uniformly bounded in h. For instance, it is necessary
that

∃β > 0 s.t. ∀h,∀ q ∈ Qh ∃ v ∈ V h with: div v = q and ‖v‖0,� ≤ 1

β
‖q‖0,�. (3.10)

Obviously, for the curl operator (in 2 and 3 dimensions) these bounded right inverses will
be defined only on V h ∩ H0,n(div0,�).

Remark 3.2 In all our examples, the pair (V h,Qh) is among the classical (and very old)
finite element spaces specially tailored for the approximation of the Poisson equation in
mixed form. In particular, properties (3.8) and (3.10) always hold.

3.2 Examples

We now present three examples of finite element spaces that can be used in the above frame-
work. For each example, we specify the corresponding polynomial spaces used on each
element and describe the corresponding sets of degrees of freedom. We restrict our analy-
sis to the case of triangles or tetrahedra; more general cases can also be considered when
corresponding changes are made (see [19]).
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Let us first fix the notation concerning the spaces of polynomials. For m ≥ 0, we denote
by P

m(T ) the space of polynomials defined on T of degree of at most m; the corresponding
vector space is denoted by Pm(T ) = (Pm(T ))2. A polynomial of degree m ≥ 3 that vanishes
throughout ∂T (hence it belongs to H1

0 (T )) is called a bubble (or an H-bubble) of degree m
over T . The space of bubbles of degree m over T is denoted by H Bm(T ) and its vector-valued
analogue by H Bm(T ). We denote by P

m
hom(T ) the space of homogeneous polynomials of

degree m, and we denote by x⊥ the vector (−x2, x1).
For m ≥ 2,

P
+
m(T ) := P

m(T )+ H Bm+1(T ) P+
m(T ) := Pm(T )+ H Bm+1(T ). (3.11)

and, for m ≥ 1, we set

BDMm(T ) := Pm(T ), RTm(T ) := Pm(T )⊕ x P
m
hom(T ). (3.12)

Moreover we set, for d = 2 and m ≥ 0

TRm(T ) := Pm(T )⊕ x⊥
P

m
hom(T ). (3.13)

and for d = 3 and m ≥ 0 (see [31])

NDm(T ) := Pm(T )⊕ x ∧ Pm
hom(T ). (3.14)

We also consider some generalized bubbles: a vector-valued polynomial of degree m ≥ 2
that belongs to H0,n(div, T ) (hence whose normal component vanishes throughout ∂T )
is called a D-bubble of degree m over T . The space of D-bubbles of degree m over T is
denoted by DBm(T ). Similarly a vector valued polynomial of degree m ≥ d that belongs to
H0,t (curl, T ) (hence whose tangential components vanish all over ∂T ) is called a C-bubble
of degree m over T . The space of C-bubbles of degree m over T will be denoted by C Bm(T ).

All the spaces used herein are well known and widely used. They are usually referred to as
Brezzi-Douglas-Marini, Raviart-Thomas, and Rotated Raviart-Thomas spaces, respectively.

The first example follows.

1. Raviart-Thomas For k ≥ 1, we take in each T,S(T ) = P
k(T ), and R(T ) := RTk(T ).

The degrees of freedom in RTk(T ) are∫
e

u · ne q ds ∀ e ∈ ∂T, ∀ q ∈ P
k(e),

∫
T

u · p dx ∀ p ∈ P
k−1(T ).

(3.15)

As Qh is made of discontinuous piecewise polynomials, here and in the following exam-
ples the degrees of freedom in S(T ) can be taken in an almost arbitrary way. The cor-
responding pair of spaces (V h,Qh) gives the classical Raviart-Thomas finite element
approximation for second-order elliptic equations in mixed form, as introduced in [36].
It is well known and easy to check that the pair (V h,Qh) satisfies

div(V h) = Qh (3.16)

and that the property (3.10) is verified. We then take M(T ) := P
k+1(T ) and M(T ) :=

NDk(T ) and note that

curl(Nh) ⊆ V h curl(
o

N h) ⊆ V h (3.17)
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and that the operator curl (for d = 2 and d = 3) has a continuous right inverse uniformly

bounded from V h ∩ H0,n(div0,�) to Nh and
o

N h respectively; that is,

∃ C > 0 such that ∀h, ∀vh ∈ V h ∩ H0,n(div0,�) ∃ϕ ∈ Nh, such that

curl ϕ = vh and ‖ϕ‖1,� ≤ C ‖vh‖0,�. (3.18)

2. Brezzi-Douglas-Marini: For k ≥ 1, we take S(T ) = P
k−1(T ), and R(T ) = BDMk(T ).

The degrees of freedom for BDMk(T ) are (see [9]):
∫
e

u · ne q ds ∀e ∈ ∂T, ∀ q ∈ P
k(e);

∫
T

u · v dx ∀ v ∈ TRk−2(T ) k ≥ 2 and d = 2,

∫
T

u · v dx ∀ v ∈ NDk−2(T ) k ≥ 2 and d = 3.

(3.19)

The resulting finite element pair (V h,Qh) is also commonly used for the approximation of
second-order elliptic equations in mixed form introduced in [15] for d = 2 and in [17,32]
for d = 3. Also in this case it has been established that the pair (V h,Qh) verifies the prop-
erties of (3.16) and (3.10). We then take M(T ) := P

k+1(T ), and M(T ) := NDk+1(T )
and note that (3.17) and (3.18) are also satisfied.

3. Brezzi-Douglas-Fortin-Marini: For k ≥ 1, we take S(T ) = P
k(T ) and R(T ) =

BDFMk+1(T ), which can be written as BDFMk+1 = BDMk(T ) + DBk+1(T ). The
degrees of freedom for BDFMk+1(T ), though similar to the previous ones, are given
here: ∫

e

u · ne q ds ∀e ∈ ∂T, ∀ q ∈ P
k(e);

∫
T

u · v dx ∀ v ∈ TRk−1(T ) d = 2,

∫
T

u · v dx ∀ v ∈ NDk−1(T ) d = 3.

(3.20)

The resulting finite element pair (V h,Qh) gives the triangular analogue of the element
BDFM k+1 introduced in [18] for the approximation of second-order elliptic equations
in mixed form. It is easy to check that the pair (V h,Qh) verifies (3.16) and (3.10). We
then take M(T ) := P

+
k+1(T ) and M(T ) := NDk(T ) + C Bk+1(T ) ∩ NDk+1(T ) and

note that (3.17) and (3.18) hold.

The three choices above are quite similar to each other, and the best choice among them
generally depends on the problem and the way in which the discrete solution is to be used.
We also use basic approximation properties: for instance, we recall that a constant C exists
such that for all T ∈ Th and for all v in Hs(T ), an interpolant v I ∈ R(T ) exists such that

|v I |1,T ≤ C |v|1,T and ‖v − v I ‖0,T ≤ Chs
T |v|s,T 1 ≤ s ≤ k + 1 (3.21)
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4 The Discontinuous Galerkin H(div;�)-Conforming Method

To introduce our DG-approximation, we start by defining, for any u, v ∈ H2(Th) and any
p, q ∈ L2(�)/R, the bilinear forms

Ah(u, v) = 2ν
[
(ε(u) : ε(v))Th − 〈{ε(u)} : [[ v ]]〉Eo

h
− 〈[[ u ]] : {ε(v)}〉Eo

h

]

− 2ν
[
〈ε(u)n, (v · n)n〉E∂h + 〈(u · n)n, ε(v)n〉E∂h

]

+ 2ν

⎡
⎢⎣∑

e∈Eo
h

αh−1
e

∫
e

[[ u ]] : [[ v ]] ds +
∑
e∈E∂h

αh−1
e

∫
e

(u · n)(v · n) ds

⎤
⎥⎦

Bh(v, q) = −(q, div v)Th ∀ v ∈ H2(Th),∀ q ∈ L2(�)/R

(4.1)

where as usual α is the penalty parameter that we assume to be positive and large enough.
It is easy to check that the solution (u, p) of (2.6) verifies:{

Ah(u, v)+ Bh(v, p) = ( f , v) ∀ v ∈ H2(Th)

Bh(u, q) = 0 ∀ q ∈ L2(�)/R.
(4.2)

For a general DG approximation, we now replace the spaces H2(Th) and L2(�)/R with
the discrete ones X h and Qh , respectively. Following [21], we choose for (X h,Qh) one
of the pairs (V h,Qh) of the previous examples in order to get a global divergence-free
approximation.

More generally, we can choose a pair (V h,Qh) in order to find a third space Nh in such
a way that (3.8), (3.16), (3.10), (3.17), and (3.18) are satisfied. This set of assumptions will
come out several times in the sequel and, therefore, it is helpful to give it a special name.

Definition 4.1 In the above setting, we say that the three spaces (V h,Qh,Nh) (resp.
(V h,Qh,N h)) satisfy Assumption H0 if (3.8) (resp. (3.9)), (3.16), (3.10), (3.17) and (3.18)
are satisfied.

We note that, according to the definition of V h , the normal component of any v ∈ V h is
continuous on the internal edges and vanishes on the boundary edges. Therefore, by splitting
a vector v ∈ V h into its tangential and normal components vn and vt

vn := (v · n)n, vt := (v · t)t ≡ v − vn, (4.3)

we have

∀ e ∈ Eh

∫
e

[[ vn ]] : τ ds = 0 ∀ τ ∈ H1(Th), (4.4)

implying that

∀ e ∈ Eh

∫
e

[[ v ]] : τ ds =
∫
e

[[ vt ]] : τ ds ∀ τ ∈ H1(Th). (4.5)

The resulting approximation to (2.6), therefore, becomes: Find (uh, ph) in V h ×Qh such
that {

ah(uh, v)+ b(v, ph) = ( f , v) ∀ v ∈ V h

b(uh, q) = 0 ∀ q ∈ Qh,
(4.6)
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where

ah(u, v) := 2ν
[
(ε(u) : ε(v))Th − 〈{ε(u)} : [[ vt ]]〉Eo

h
− 〈[[ ut ]] : {ε(v)}〉Eo

h

]

+ 2να
∑
e∈Eo

h

h−1
e

∫
e

[[ ut ]] : [[ vt ]] ds ∀ u, v ∈ V h,

b(v, q) := −(q, div v)� ∀ v ∈ V h, ∀q ∈ Qh .

(4.7)

Consistency The consistency of the formulation (4.6) can be checked by means of the
usual DG-machinery. In this case, it is sufficient to compare (4.1) and (4.7) and to observe
that if (u, p) is the solution of (2.6), then

Ah(u, vh) ≡ ah(u, vh), Bh(vh, p) ≡ b(vh, p), ∀vh ∈ V h ⊆ H0,n(div;�),
Further, it is evident that, Bh(u, qh) ≡ b(u, qh) for all qh ∈ Qh . Hence, as (u, p) verifies
(4.2), it also verifies (4.6); that is,{

ah(u, v)+ b(v, p) = ( f , v) ∀ v ∈ V h

b(u, q) = 0 ∀ q ∈ Qh .
(4.8)

Thus, consistency is proved.
To prove the existence and uniqueness of the solution of (4.6) and to obtain the optimal

error bounds, we need to define suitable norms. We define the following semi-norms

|v|21,h =
∑

T ∈Th

‖∇v‖2
0,T , |[[ v ]]|2∗ :=

∑
e∈Eo

h

h−1
e ‖[[ v ]]‖2

0,e, ∀ v ∈ H1(Th),

and norms

‖v‖2
DG : = 2ν |v|21,h + 2ν |[[ vt ]]|2∗ v ∈ H1(Th),

|||v|||2 : = ‖v‖2
DG +

∑
T ∈Th

2ν h2
T |ε(v)|21,T v ∈ H2(Th).

(4.9)

We also remark that the seminorms defined in (4.9) are actually norms with the additional
requirement that v ∈ H0,n(div;�). We also observe that when restricted to discrete functions
v ∈ V h , the ‖ · ‖DG -norm and the ||| · ||| are equivalent (using inverse inequality). Continuity
can easily be shown for both bilinear forms:

|ah(u, v)| ≤ |||u||| |||v||| ∀ u, v ∈ H2(Th),

|b(v, q)| ≤ ‖v‖1,h‖q‖0,� ∀ v ∈ H1(Th), q ∈ L2(�)/R .

Following [19], the existence and uniqueness of the approximate solution and optimal error
bounds are guaranteed if the following two conditions are satisfied:

(H1): coercivity: ∃ γ > 0 independent of the mesh size h such that

ah(v, v) ≥ γ ‖v‖2
DG ∀ v ∈ V h . (4.10)

(H2): inf-sup condition: ∃ β > 0 independent of the mesh size h such that

sup
v∈V h

(div v, qh)�

‖v‖DG
≥ β‖qh‖0,� ∀ qh ∈ Qh . (4.11)
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Condition (H2) is a consequence of the inf-sup condition that holds for the continuous problem
(2.6):

∃β > 0 s.t. ∀h, ∀qh ∈ Qh ∃ v ∈ H1(�) : div v = qh and ‖v‖1,� ≤ 1

β
‖qh‖0,�.

It is well known that for all the families considered here an interpolation operator v → v I ∈
V h exists that verifies (3.21) (in particular for s = 1), and

div v I = div v (= qh).

By observing that [[ v ]] = 0 on the internal edges as v ∈ H1(�), and by using the Agmon
trace inequality [2] and (3.21) (for s = 1), we have

|[[ v I ]]|2∗ :=
∑
e∈Eo

h

h−1
e ‖[[ v I

t ]]‖2
0,e =

∑
e∈Eo

h

h−1
e ‖[[ (v I − v)t ]]‖2

0,e ≤ C |v|21,�. (4.12)

Hence, again using (3.21), we deduce that

‖v I ‖DG ≤ C |v|1,�.
Thus (4.11) is proved.

In order to prove (4.10) we need to extend (2.8) from Lemma 2.1 to spaces of discontinuous
vectors. We have therefore the following result. Also see Appendix for further comments on
the validity of the result in three dimensions.

Lemma 4.2 Let V h be a piecewise polynomial subspace of H0,n(div;�). Then, ∃ CK > 0
independent of h such that

|v|21,h ≤ CK

⎛
⎝‖ε(v)‖2

0,Th
+
∑
e∈Eo

h

h−1
e ‖[[ vt ]]‖2

0,e

⎞
⎠ , ∀ v ∈ V h . (4.13)

Proof To show (4.13), a direct application of [13, Inequality (1.14)] to v ∈ V h gives

|v|21,h ≤CK

⎛
⎜⎜⎜⎜⎝‖ε(v)‖2

0,Th
+
∑
e∈Eo

h

h−1
e ‖[[ vt ]]‖2

0,e+ sup
η∈L2(�)

‖η‖0,�=1,
∫
�

η=0

⎛
⎝∫
�

v · ηdx

⎞
⎠

2

⎞
⎟⎟⎟⎟⎠ , (4.14)

We now show that the last term in (4.14) can be bounded by the first two. We claim that

sup
η∈L2(�)

‖η‖0,�=1,
∫
�

η=0

⎛
⎝∫
�

v · ηdx

⎞
⎠

2

≤ C
(
‖ε(v)‖2

0,Th
+
∑
e∈Eo

h

h−1
e ‖[[ vt ]]‖2

0,e

)
. (4.15)

There are surely many ways of checking (4.15). Here, we propose one. For v ∈ V h and
η ∈ L2(�) with

∫
�
η dx = 0, we set

I(v, η) :=
∫
�

v · η dx,
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and we want to prove that

I(v, η) ≤ C
(
‖ε(v)‖2

0,Th
+
∑
e∈Eo

h

h−1
e ‖[[ vt ]]‖2

0,e

)1/2‖η‖0,� (4.16)

that will easily give (4.15) taking the supremum with respect to η with ‖η‖0,� = 1. To prove
(4.16) for every η ∈ L2(�) with

∫
�
η dx = 0, we consider the following auxiliary elasticity

problem: Find χ ∈ H1
0,n(�) such that:

(ε(χ), ε(v))0,� = (η, v)0,� ∀v ∈ H1
0,n(�). (4.17)

Thanks to (2.8) problem (4.17) has a unique solution, and we set

τ := ε(χ). (4.18)

We note that as natural boundary condition for (4.17) we easily have

(τ )nt ≡ (ε(χ) · n) · t = 0 on �, (4.19)

where t is any tangent unit vector to �.
Due to well-known results on the regularity of the solutions of PDE systems on polygons,

the solution τ of (4.17), (4.18) (which, a priori, on a totally general domain would only be in
(L2(�))2×2

sym ) satisfies the following a priori estimate: there exists a p > 2 (depending on the

geometry of �) and a constant C p such that for all η ∈ L2(�) the corresponding τ satisfies

‖τ‖
(L p(�))2×2

sym
+ ‖divτ‖0,� ≤ C p‖η‖0,�. (4.20)

The proof of the following proposition (actually, in two or three dimensions) is given in
Appendix. ��

Proposition 4.3 Let T be a triangle with minimum angle θ > 0, and let e be an edge of T .
Then for every p > 2 and for every integer kmax , a constant C p,θ,kmax exists such that

∫
e

v · (τ · n) ds ≤ C p,θ,kmax h−1/2
T ‖v‖0,e (hT ‖divτ‖0,T + h

p−2
p

T ‖τ‖0,p,T ) (4.21)

for every τ ∈ (L p(�))2×2
sym with divergence in L2(T ) and for every v ∈ Pkmax (e).

Then we have

I(v, η) =
∫
�

v · η dx = −
∫
�

v · (divτ ) dx

= (ε(v) : τ )Th − 〈[[ vt ]] : {τ }〉Eo
h

(4.22)

having taken into account that at the interelement boundaries the normal component of v is
continuous and on � both the normal component of v and (τ )nt are zero.

At this point, we can apply (4.21) to each e of the last term in (4.22). We apply the
usual Cauchy-Schwarz inequality on the first term and we use instead the generalized Hölder
inequality (with q = 1/2 and r = 2p/(p − 2), so that 1

p + 1
q + 1

r = 1) on the second one.
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Then we obtain

∑
e∈Eo

h

∫
e

[[ vt ]] : {τ } ds ≤
∑

T ∈Th

∑
e∈∂T

C p,θ,kmax

(
h−1/2

T ‖v‖0,e hT ‖divτ‖0,T

+h−1/2
T ‖v‖0,e‖ h

p−2
p

T ‖τ‖0,p,T

)
≤ C |[[ vt ]]|∗ h ‖divτ‖0,�

+C
( ∑

e∈Eo
h

h−1
e |[[ vt ]]|20,e

)1/2( ∑
e∈Eo

h

‖τ‖p
0,p,T (e)

)1/p( ∑
e∈Eo

h

h
p−2

p r
e

)1/r

≤ Ch |[[ vt ]]|∗ ‖divτ‖0,� + C |[[ vt ]]|∗ ‖τ‖0,p,� μ(�)
1/r (4.23)

where for each e ∈ Eo
h with e = ∂T + ∩ ∂T −, the set T (e) refers to T (e) := T + ∪ T −. In

the second line, μ(�) denotes the measure of the domain �, whereas the constant C still
depends on p, kmax and on the maximum angle in the decomposition Th .

From (4.22), (4.23), and the bound (4.20) we then obtain

|I(v, η)| ≤ C
(‖ε(v)‖0,Th + |[[ vt ]]|∗

) ‖η‖0,� (4.24)

which gives (4.16). Thus the proof of the lemma is complete. ��

Remark 4.4 The fact that in inequality (4.13) only the jumps over the interior edges e ∈ Eo
h

(but not on the boundary edges) are included, prevents a direct and straightforward application
of the results from [12]. The proof presented here is surely too elaborate, and we believe that
a simpler proof is possible. However some of the machinery used here is likely to be of use
elsewhere. Therefore, we decided that it would be worthwhile to present the proof we have
obtained to date.

The stability of ah(·, ·) in the ‖ · ‖DG -norm can now be easily checked with the usual DG
machinery. We have

∣∣∣∣∣∣
∫
e

{ε(v)} : [[ vt ]] ds

∣∣∣∣∣∣ ≤ h1/2‖{ε(v)}‖0,e‖h−1/2[[ vt ]]‖0,e,

which when we proceed as in [5] (or as in (4.23) with p = 2) yields
∣∣∣∣∣∣
∑
e∈Eo

h

∫
e

{ε(v)} : [[ vt ]] ds

∣∣∣∣∣∣ ≤ C |v|1,h |[[ vt ]]|∗. (4.25)

Using (4.25) in (4.7), we then have

ah(v, v) ≥ 2ν‖ε(v)‖2
0,Th

+ 2ν α‖[[ vt ]]|2∗ − 4νC |v|1,Th |[[ vt ]]|∗.
Now using the Korn inequality (4.13) and the usual arithmetic-geometric mean inequality,
we easily have, for large enough α:

ah(v, v) ≥ γ ‖v‖2
DG ∀ v ∈ V h .

We close this section with the following theorem.
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Theorem 4.5 Let (V h,Qh) be as in one of our three examples. Then problem (4.6) has a
unique solution (uh, ph) ∈ V h × Qh that verifies

div uh = 0 in �. (4.26)

Moreover, there exists a positive constant C, independent of h, such that for every vh ∈ V h

with div vh = 0 and for every qh ∈ Qh the following estimate holds:

‖u − uh‖DG ≤ C ‖u − vh‖DG ,

‖p − ph‖0,� ≤ C (‖p − qh‖0,� + ‖u − vh‖DG), (4.27)

with (u, p) solution of (2.6).

Proof The existence and uniqueness of the solution of (4.6) follow from (4.10), (4.11). The
divergence-free property (4.26) is implied by (3.16), which holds for all our choices of spaces.
Let vh ∈ V h also be divergence-free; then we obviously have that b(vh − uh, q) = 0 for
every q ∈ L2(�)/R. In particular, b(vh − uh, p − ph) = 0. Hence, from the coercivity
(4.10), consistency (4.8), and continuity of ah(·, ·) we deduce immediately

γ ‖vh − uh‖2
DG ≤ ah(vh − uh, vh − uh)

= ah(vh − u, vh − uh) ≤ ‖vh − u‖DG‖vh − uh‖DG .

On the same basis we deduce that the first estimate in (4.27) follows by triangle inequality.
For every wh ∈ V h , using the consistency and continuity of ah(·, ·), we have

b(wh, qh − ph) = b(wh, qh − p)+ b(wh, p − ph) = b(wh, qh − p)− ah(u − uh,wh)

≤ (‖qh − p‖0,� + ‖u − uh‖DG)‖wh‖DG . (4.28)

By dividing (4.28) by ‖wh‖DG and then using the inf-sup condition (4.11), we immediately
deduce that

β‖qh − ph‖0,� ≤ ‖qh − p‖0,� + ‖u − uh‖DG ,

and that the second estimate in (4.27) follows again by triangle inequality. ��
Remark 4.6 In the assumptions of Theorem 4.5, we could obviously consider any trio of
finite element spaces satisfying H0. However, for choices like RT0, not considered in our
three examples, the estimate (4.27) could be meaningless, as the term ‖u − vh‖DG does not,
in general, go to zero with h. Still, this choice could be profitably used, in some cases, as a
preconditioner, as it does satisfy H0, H1, and H2.

5 Discrete Helmholtz Decompositions

In this section we provide results related to the discrete Helmholtz decomposition, introduced
in Sect. 3 that plays a key role in the design of the preconditioner. We wish to note that
Discrete Helmholtz or Hodge decompositions have been shown and used in several contexts
for similar spaces but with other boundary conditions (typically, homogeneous Dirichlet)
in [6,7,16,20]. A nice and short proof in the language of Finite Element Exterior Calculus
can be also found in ([9], p. 72). Here, together with the proof of the decomposition with
our boundary conditions, we provide an estimate in the DG-norm for the components in
the splitting, that will be essential in the analysis of the solver, and that, to the best of our
knowledge, has not been obtained or used in any previous work.
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So far, we have assumed that the computational domain � is a polygon (or polyhedron).
From now on, for the sake of simplicity, we are going to work under the stronger assumption
that � is a convex polygon or polyhedron. As is well known, this allows the use of better
regularity results, and in particular the H2-regularity for elliptic second-order operators.

Following [19] we define the discrete gradient operator Gh : Qh −→ V h as

(Ghqh, vh)0,� := −(qh, div vh)0,� ∀ vh ∈ V h . (5.1)

Lemma 5.1 Assume that together the three spaces (V h,Qh,Nh) (resp. (V h,Qh,N h)) sat-
isfy assumption H0 (given in Definition 4.1). Then, in d = 2, for any vh ∈ V h a unique
qh ∈ Qh and a unique ϕh ∈ Nh exist such that

vh = Ghqh + curl ϕh, (5.2)

that is,

V h = Gh(Qh)⊕ curl Nh .

If d = 3, there exists a ψ ∈ N h such that

vh = Ghqh + curlψh, (5.3)

and therefore

V h = Gh(Qh)⊕ curl N h .

Moreover, in both cases there exists a constant C independent of h such that the following
estimate holds:

‖Ghqh‖DG ≤ C‖div vh‖0,�. (5.4)

We present the proof in two dimensions; see however Remark 5.2 after this proof, where
the differences for the case d = 3 are discussed.

Proof For vh ∈ V h , consider the auxiliary problem:

−
q = div vh in �,
∂q

∂n
= 0 on ∂�, and

∫
�

q dx = 0. (5.5)

Owing to the boundary conditions in V h , we have that div vh has zero mean value in �.
Hence, problem (5.5) has a unique solution, that satisfies

‖q‖2,� ≤ Creg‖div vh‖0,�. (5.6)

We write (5.5) in mixed form:

σ = −∇q in �, div σ = div vh in �, σ · n = 0 on ∂�.

and we consider directly the approximation of the mixed formulation: Find (σ h, qh) ∈
V h × Qh such that :{

(σ h, τ )0,� − (qh, div τ )0,� = 0 ∀ τ ∈ V h,

(div σ h, sh)0.� = (div vh, sh)0,� ∀ sh ∈ Qh .
(5.7)

Problem (5.7) obviously has a unique solution, which moreover satisfies

‖σ − σ h‖0,� ≤ C h |σ |1,� ≤ CCreg h ‖div vh‖0,�, (5.8)
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given that (5.6) was used in the last step. As both vh and σ h are in V h (and as (3.16) holds),
the second equation in (5.7) directly implies that

div (σ h − vh) = 0.

Hence, the exact sequence (3.8) implies that

a unique ϕh ∈ Nh exists such that σ h − vh = curl ϕh . (5.9)

Next, by using the first equation in (5.7) and then applying definition (5.1), we deduce that

(σ h, τ )0,� = (qh, div τ )0,� = −(Ghqh, τ )0,� ∀ τ ∈ V h,

which implies σ h = −Ghqh , that joined to (5.9) gives (5.2).
In order to prove (5.4), we recall that

‖Ghqh‖2
DG = ‖σ h‖2

DG = ‖∇σ h‖2
0,Th

+ |[[ (σ h)t ]]|2∗. (5.10)

For the first term, by adding and subtracting the interpolant σ I of σ and then using inverse
inequality and (3.21), we have:

‖∇σ h‖0,Th ≤ ‖∇(σ h − σ I )‖0,Th + ‖∇σ I ‖0,Th

≤ Cinvh−1‖σ h − σ I ‖0,Th + C‖∇σ‖0,Th . (5.11)

From triangle inequality, (5.8), and standard approximation properties (see (3.21)), we have

‖∇σ h‖0,Th ≤ C ‖div vh‖0,�. (5.12)

The jump term in (5.10) is estimated similarly. First, we remark that σ = −∇q with q ∈
H2(�) so that [[ σ ]] = 0 on each e ∈ Eo

h , and therefore

|[[ (σ h)t ]]|2∗ = |[[ (σ h)t − σ t ]]|2∗.
Then, using Agmon trace inequalities (5.8) and the boundedness of σ h and σ , we have

|[[ (σ h)t − σ t ]]|2∗ =
∑
e∈Eo

h

h−1
e ‖[[ (σ h)t − σ t ]]‖2

0,e

≤ Ct h
−2‖σ h − σ‖2

0,Th
+ Ct‖∇(σ h − σ )‖2

0,Th

≤ CCreg‖div vh‖2
0,�.

Thus the proof is complete. ��
Remark 5.2 For d = 3, instead of (5.9), the exact sequence (3.9) property implies

∃ψh ∈ N h such that σ h − vh = curlψh .

The vector potential ψh would be uniquely determined by adding the condition divψ = 0.
In fact, on a simply connected domain, divψ = 0 and curlψ = 0 together with ψ ∈
H0,t (curl,�) implyψ = 0. However, in general, the solution of divψ = 0 and curlψ = vh

together with ψ ∈ H0,t (curl,�) (which is uniquely determined) does not belong to N h .
A possibility to select a vector potential ψh in a unique way could be to compute it as the
approximation to the following continuous problem: Find (ψ, θ) in H0,t (curl;�)× H1

0 (�)

such that

(curlψ, curlφ)Th + (∇θ,φ)Th = (vh,φ)Th ∀φ ∈ H0,t (curl;�),
(ψ,∇s)Th = 0 ∀ s ∈ H1

0 (�).
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Setting

o
Wh :=

{
w ∈ H1

0 (�) : w|T ∈ P
k+1(T ) ∀ T ∈ Th

}
,

the discrete problem reads: Find (ψh, θh) ∈ N h× o
Wh such that

(curlψh, curlφh)Th + (∇θh,φh)Th = (vh,φh)Th ∀φh ∈ N h,

(ψh,∇wh)Th = 0 ∀wh ∈ o
Wh .

(5.13)

Problem (5.13) has a unique solution satisfying curlψh = vh (from the first equation), and
divψh = 0 (from the second equation).

6 Preconditioner: Fictitious Space Lemma and Auxiliary Space Framework

6.1 Preconditioner for the Semi-Definite System

Assume V is a Hilbert space equipped with the norm ‖·‖V and that A : V �→ V ′ is a bounded
linear operator. We define the bilinear form

(u, v)A = 〈Au, v〉.
We say A is symmetric if the bilinear form (u, v)A is symmetric. We say that A is semi-

positive definite if

(v, v)A ≥ 0, ∀v ∈ V

and α > 0 exists such that

(v, v)A ≥ α‖v‖2
V/N (A), ∀v ∈ V/N (A).

And we say that A is SPD (Symmetric Positve Definite) if it is symmetric and α > 0 exists
such that

(v, v)A ≥ α‖v‖2
V , ∀v ∈ V .

One useful property of symmetric semi-positive definite operators is that

Av = 0 iff 〈Av, v〉 = 0. (6.1)

A preconditioner for A is another symmetric semi-positive definite operator B : V ′ �→ V .
Again, we consider the bilinear form

( f, g)B = 〈 f, Bg〉.
The operator B A : V �→ V satisfies

(B Au, v)A = 〈Av, B Au〉 = (Au, Av)B .

Lemma 6.1 If A : V �→ V ′ and B : V ′ �→ V are both symmetric semi-positive definite
such that B is positive definite on R(A), then

(1) B : R(A) �→ R(B A) is an isomorphism (with the inverse satisfying trivially that
B−1(B Av) = Av).

(2) The bilinear form (·, ·)B−1 defines an inner product on R(B A).

123



536 J Sci Comput (2014) 58:517–547

(3) The bilinear form (·, ·)A defines an inner product on R(B A).
(4) B A is symmetric positive definite on R(B A)with either of the above two inner products.

Proof All these results are pretty obvious, and their proofs are similar. Let us give the proof
for (3) as an example.

We only need to verify that (·, ·)A is positive definite on R(B A). If v ∈ R(B A) is such
that (v, v)A = 0, then, by (6.1), we have Av = 0. We write v = B Aw for some w ∈ V ,
then AB Aw = 0 and hence (Aw, Aw)B = 0. As B is positive definite on R(A), we have
Aw = 0. Thus, v = AB Aw = 0, as desired. ��

For the system Au = f , we can apply the preconditioner B and the preconditioned
conjugate gradient (PCG) method with respect to the inner product (·, ·)B−1 with the following
convergence estimate:

‖u − uk‖A ≤ 2

(√
κ(B A)− 1√
κ(B A)+ 1

)k

‖u − u0‖A.

The condition number can then be estimated by κ(B A) ≤ c1/c0, either where

c0(v, v)B−1 ≤ (B Av, v)B−1 ≤ c1(v, v)B−1 , ∀v ∈ R(B A),

or equivalently where

c0(w,w)B ≤ (Bw, Bw)A ≤ c1(w,w)B , ∀w ∈ R(A),

or where

c−1
1 (v, v)A ≤ (B−1v, v) ≤ c−1

0 (v, v)A ∀v ∈ R(B A).

6.2 Fictitious Space Lemma and Generalizations

Let us present and prove a refined version of the Fictitious Space Lemma originally proposed
by Nepomnyaschikh [34] (see also [41]).

Lemma 6.2 Let Ṽ and V be two Hilbert spaces, and let � : Ṽ �→ V be a surjective map.
Let B̃ : Ṽ ′ �→ Ṽ be a symmetric and positive definite operator. Then B := �B̃�′ is also
symmetric and positive definite (here �′ : V ′ �→ Ṽ ′ is such that 〈�′g, ṽ〉 = 〈g,�ṽ〉, for all
g ∈ V ′ and ṽ ∈ Ṽ ). Furthermore,

〈B−1v, v〉 = inf
�ṽ=v

〈B̃−1ṽ, ṽ〉.

Proof It is obvious that B is symmetric and positive semi-definite. Note that if v ∈ V ′ is
such that 〈Bv, v〉 = 0, then 〈B̃�′v,�′v〉 = 〈Bv, v〉 = 0. This means that �′v = 0 as B̃ is
SPD. Hence, v = 0 as �′ is injective. This proves that B is positive definite.

For any ṽ ∈ Ṽ , let v = �ṽ and ṽ∗ = B̃�′ B−1v. As we obviously have�ṽ∗ = v, we can
write ṽ = ṽ∗ + w̃ with �w̃ = 0. Thus,

inf
�ṽ=v

〈B̃−1ṽ, ṽ〉 = inf
�w̃=0

〈B̃−1(ṽ∗ + w̃), ṽ∗ + w̃〉

= 〈B̃−1ṽ∗, ṽ∗〉 + inf
�w̃=0

(
〈B̃−1w̃, w̃〉 + 2〈B̃−1ṽ∗, w̃〉

)

From the definition of ṽ∗ we have

〈B̃−1ṽ∗, ṽ∗〉 = 〈B−1v,�ṽ∗〉 = 〈B−1v, v〉,
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and also

〈B̃−1ṽ∗, w̃〉 = 〈B̃−1 B̃�′ B−1v, w̃〉 = 〈�′ B−1v, w̃〉 = 〈B−1v,�w̃〉 = 0.

The last two identities lead to the desired result. ��
Theorem 6.3 Assume that Ã : Ṽ �→ Ṽ ′ and A : V �→ V ′ are symmetric semi-definite
operators. We assume that � : Ṽ �→ V is surjective and that �(N ( Ã)) = N (A). Then for
any SPD operator B̃ : Ṽ ′ �→ Ṽ , we have, for B = �B̃�′,

κ(B A) ≤ κ(�)κ(B̃ Ã).

Here κ(�) is the smallest ratio c1/c0 that satisfies

c−1
1 〈Av, v〉 ≤ inf

�ṽ=v
〈 Ãṽ, ṽ〉 ≤ c−1

0 〈Av, v〉, ∀v ∈ R(B A). (6.2)

Proof Denote κ(B̃ Ã) = b1/b0 with b1 and b0 satisfying

b−1
1 (ṽ, ṽ) Ã ≤ (B̃−1ṽ, ṽ) ≤ b−1

0 (ṽ, ṽ) Ã, ∀ṽ ∈ R(B̃ Ã).

By (6.2), we obtain

b−1
1 c−1

1 ‖v‖2
A ≤ inf

�ṽ=v,ṽ∈R(B̃ Ã)
(B̃−1ṽ, ṽ) ≤ b−1

0 c−1
0 ‖v‖2

A, ∀v ∈ R(B A).

By the assumption that �(N ( Ã)) = N (A), we can prove that �′(R(A)) ⊂ R( Ã) and

{ṽ|�ṽ = v ∈ R(B A)} = {ṽ|�ṽ = v ∈ R(B A), ṽ ∈ R(B̃ Ã)}.
By Lemma 6.2,

inf
�ṽ=v,ṽ∈R(B̃ Ã)

(B̃−1ṽ, ṽ) = inf
�ṽ=v

(B̃−1ṽ, ṽ) = (B−1v, v), ∀v ∈ R(B A).

Therefore,

b−1
1 c−1

1 ‖v‖2
A ≤ (B−1v, v) ≤ b−1

0 c−1
0 ‖v‖2

A ∀v ∈ R(B A).

��
Theorem 6.4 Assume that the following two conditions are satisfied for �. First,

‖�ṽ‖A ≤ c1‖ṽ‖ Ã, ∀ṽ ∈ Ṽ .

Second, for any v ∈ V there exists ṽ ∈ Ṽ such that �ṽ = v and

‖ṽ‖ Ã ≤ c0‖v‖A.

Then κ(�) ≤ c1/c0 and, under the assumptions of Theorem 6.3,

κ(B A) ≤
(

c1

c0

)2

κ(B̃ Ã).

Remark 6.5 In view of the application of the above results to our two dimensional case (as
we shall see in the next subsection), it would have been enough to restrict ourselves to the
symmetric positive definite case (instead of the semi-definite case treated in the last two
subsections). However we preferred to have them in the present more general setting, as in
this form they are likely to be useful in many other circumstances (starting, as natural, from
the extension of the present theory to the three-dimensional case).
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6.3 Application to Our Problem

In this section we design a simple preconditioner for the linear system resulting from the
approximation of the Stokes problem (2.6) defined in (4.6), (4.7). Note that the bilinear form
ah(·, ·) defined in (4.7) provides a discretization of the vector Laplacian problem

−div(2νε(u)) = f in �, u · n = 0, (ε(u) · n) · t = 0 on �.

We denote by Ah the operator associated with ah(·, ·). As the solution uh ∈ V h of (4.6) is
divergence-free, the discrete Helmholtz decomposition (5.2) implies that

a unique ψh ∈ Nh exists such that uh = curlψh .

At this point, it is convenient to introduce the space V̊ h as

V̊ h := V h ∩ H0(div0;�). (6.3)

We note that as the sequence (3.8) is exact, we have

V̊ h ≡ curl Nh, (6.4)

and that the mapping is one-to-one. Therefore, restricting the bilinear form ah(·, ·) to V̊ h ,
in the spirit of Remark 3.1, corresponds here to restricting the trial and test space to V̊ h ≡
curl(Nh). The discrete problem (4.6) then reduces to the following problem: Find ψh ∈ V̊ h

such that

ah(ψh, ϕh) = ( f , ϕh) ∀ϕh ∈ V̊ h (6.5)

Defining the operator Ah : V̊ h �→ V̊
′
h by 〈Ahψh, ϕh〉 = ah(ψh, ϕh), ψh, ϕh ∈ V̊ h , we can

write (6.5) as

Ahψh = fh .

We now use the original space V h as the auxiliary space for V̊ h . Define Ãh : V h �→ V ′
h by

〈 Ãhuh, vh〉 = ah(uh, vh), uh, vh ∈ V h . We note that Ãh is a discrete Laplacian. We assume
that B̃h is an optimal preconditioner for Ãh .

We now define the operator

�h : V h −→ V̊ h ≡ curl(Nh) (6.6)

according to (5.2), namely

�hvh = curl ϕh .

Note that �h is a surjective operator and that �h acts as the identity on the subspace V̊ h .
The auxiliary space preconditioner for Ah is then defined by

Bh = �h B̃h�
∗
h . (6.7)

Lemma 6.6 Assume that the spaces(V h,Qh,Nh) satisfy assumption H0. Then Bh given by
(6.7) is an optimal preconditioner for Ah as long as B̃h is an optimal preconditioner for Ãh.

Proof Following the auxiliary space techniques (Theorem 6.4), we need to check that the
following two properties are satisfied:

(A1): Local Stability: there exists a positive constant C1 independent of h such that

‖�hvh‖DG ≤ C1‖vh‖DG ∀ vh ∈ V h (6.8)
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(A2): Stable decomposition: there exists a positive constant C2 independent of h such
that for any wh ∈ V̊ h there exists vh ∈ V h such that �hvh = wh and

‖vh‖DG ≤ C2‖wh‖DG . (6.9)

To prove (6.8) from the Helmholtz decomposition (5.2) and the definition (6.6) of �h , we
have

vh = Ghqh + curl ϕh = Ghqh +�hvh . (6.10)

Using estimate (5.4) from Lemma 5.1 and the clear fact that div vh is the trace of ε(vh), we
have

‖Ghqh‖DG ≤ C‖div vh‖0,� ≤ C‖ε(vh)‖0,Th ≤ C‖vh‖DG . (6.11)

Hence, (6.8) follows from (6.10) and (6.11):

‖�hvh‖DG = ‖vh − Ghqh‖DG ≤ ‖vh‖DG + ‖Ghqh‖DG ≤ C‖vh‖DG .

Finally, the inequality (6.9) holds with C2 = 1 by taking vh = wh . ��

7 Numerical Experiments

7.1 Setup

The tests presented in this section use discretization by the lowest order, namely, BDM1

elements paired with piece-wise constant space for the pressure. They verify the a priori
estimates given in Theorem 4.5 and confirm the uniform bound on the condition number of
the preconditioned system for the velocity.

As previously set up, the discrete problem under consideration is given by Eq. (4.6) with
bilinear forms ah(·, ·) and b(·, ·) defined in (4.7). In the numerical tests presented here, we
take ν = 1/2 and the penalty parameter α = 6 in (4.7). We present two sets of tests with
A corresponding to the Stokes equation discretized on a sequence of successively refined
unstructured meshes as shown in Figs. 1 and 2. On the square the coarsest mesh (level of
refinement J = 0) has 160 elements and 97 vertices with 448 BDM1 degrees of freedom.
The finer triangulations of the square domain are obtained via 1, . . . , 5 regular refinements
(every element divided in 4) and the finest one is with 163,840 elements, 82,433 vertices and
490,496 BDM degrees of freedom. Similarly for the L-shaped domain we start with a coarsest
grid (J = 0) with 64 vertices and 97 elements. For the L-shaped domain the finest grid (for
J = 5) has 99,328 elements, 50,129 vertices and 297,056 BDM1 degrees of freedom. In
the computations, we approximate the velocity component uh of the solution of the Stokes
equation by solving several simpler equations (such as scalar Laplace equations). After we
obtain the velocity, the pressure then is found via a postprocessing step at low computational
cost. Further, for this sequence of grids the BDM1 interpolant of a function v on the k − th
grid is denoted by v Ik . Accordingly the piece-wise constant, L2-orthogonal projection of p
is denoted by pIk . We also use the notation (uk, pk) for the solution of (4.6) on the k − th
grid, k = 0, . . . , 5.

7.2 Discretization Error

We now present several tests related to the error estimates given in the previous sections. We
computed and tabulated approximations of the order of convergence of the discrete solution
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(a) (b)
Fig. 1 Meshes used in the tests for the unit square domain � = (0, 1)× (0, 1). a Coarsest mesh. b Mesh for
level of refinement J = 3

(a) (b)
Fig. 2 Meshes used in the tests for the L-shaped domain� = ((0, 1)× (0, 1)) \ ([ 1

2 , 1)×[ 1
2 , 1)). a Coarsest

mesh. b Mesh for level of refinement J = 3

in different norms. These approximations are denoted by γ0 ≈ β0, γDG ≈ βDG , γp ≈ βp ,
and γ∗ ≈ β∗. The actual orders of convergence β0, βDG , βp , and β∗ are

‖u − uh‖0,� ≈ C(u)hβ0 , ‖u − uh‖DG ≈ C(u)hβDG ,

‖p − ph‖0,� ≈ C(u, p)hβp , |[[ uh ]]|∗ ≈ C(u)hβ∗ .

Here, as in (4.12), we denote

|[[ uh ]]|2∗ =
∑
e∈Eo

h

h−1
e

∫
e

[[ (uh)t ]]2 ds.

Note that β∗ is the order with which the jumps in the approximate solution (not in the error)
go to zero.
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Table 1 Approximate order of convergence for the difference (uI − uh) and (pI − ph) and the jumps
|[[ uh ]]|∗ for the square and L-shaped domains

Square domain L-shaped domain

k 1 2 3 4 5 k 1 2 3 4 5

γ0 1.75 1.87 1.94 1.98 1.99 γ0 1.69 1.79 1.90 1.96 1.98

γDG 0.98 1.0 1.00 1.00 1.00 γDG 0.97 1.01 1.01 1.00 1.00

γp 0.94 0.95 0.97 0.99 0.99 γp 0.93 0.92 0.95 0.97 0.99

γ∗ 0.77 0.89 0.95 0.98 0.99 γ∗ 0.73 0.85 0.93 0.97 0.99

Here, u and p are given in (7.1) and (7.2)

We present two sets of experiments to illustrate the results given in Theorem 4.5. First,
we consider the exact given solution and calculate the right–hand side and the boundary
conditions from this solution. We set

φ = xy(1 − x)(2x − 1)(y − 1)(2y − 1), u = curlφ. (7.1)

Clearly, the function φ vanishes on the boundary of both the domains under consideration
and we take u defined in (7.1) as exact solution for the velocity for both the square and the
L-shaped domains. For the pressure we choose as exact solutions functions with zero mean
value and select p different for the square and the L-shaped domain, namely

p = x2 − 3y2 + 8
3 xy, (square domain),

p = x2 − 3y2 + 24
7 xy, (L-shaped domain).

(7.2)

The right hand side f is calculated by plugging (u, p) defined in (7.1), (7.2) in (2.1). Table 1
shows tabulation of the order of convergence of (uh, ph) to (uI , pI ) for both the square
domain and the L-shaped domain. The values approximating the order of convergence dis-
played in Table 1 are

γ = log2
‖uI

k−1 − uk−1‖
‖uI

k − uk‖
, γ∗ = log2

|[[ uk ]]|∗
|[[ uk−1 ]]|∗ ,

γp = log2
‖pI

k−1 − pk−1‖0,�

‖pI
k − pk‖0,�

, k = 1, . . . , 5.

Here ‖ · ‖ stands for any of the DG or L2 norms. The quantity γ is the corresponding
γ0 or γDG . From the results in this table, we can conclude that in the ‖ · ‖DG norm the
dominating error is the interpolation error, and as the next example shows, in general, the
order of convergence in ‖ · ‖DG is 1.

The second test is for a fixed right hand side f = 2(1, x). We calculate approxima-
tions to the order of convergence of the numerical solutions on successively refined grids as
follows:

γ = log2
‖uk − uk−1‖
‖uk+1 − uk‖ , γ∗ = log2

|[[ uk ]]|∗ − |[[ uk−1 ]]|∗
|[[ uk+1 ]]|∗ − |[[ uk ]]|∗ ,

γp = log2
‖pk − pk−1‖0,�

‖pk+1 − pk‖0,�
, k = 1, . . . , 4.

Again, ‖ · ‖ denotes any of the (semi)-norms of interest and γ approximates the correspond-
ing order of convergence. Table 2 shows the tabulated values of γ0, γDG , γp , and γ∗. It is

123



542 J Sci Comput (2014) 58:517–547

Table 2 Approximate order of convergence of the error for square and L-shaped domains and right–hand
side f = 2(1, x)

Square domain L-shaped domain

k 1 2 3 4 5 k 1 2 3 4 5

γ0 1.70 1.85 1.93 1.97 1.98 γ0 1.65 1.79 1.86 1.74 1.24

γDG 0.86 0.95 0.98 0.99 1.00 γDG 0.84 0.92 0.92 0.86 0.74

γp 0.94 0.94 0.97 0.98 0.99 γp 0.91 0.89 0.88 0.82 0.70

γ∗ 0.70 0.86 0.94 0.97 0.99 γ∗ 0.63 0.81 0.89 0.89 0.83

clear from these values that the order of approximation for the velocity and the pressure is
optimal for the square domain, whereas for the L-shaped domain the convergence is not of
optimal order, due to the singularity of the solution near the reentrant corner. The numerical
experiments and also the approximations for the orders of convergence presented in Tables 1
and 2 are computed using the FEniCS package http://fenicsproject.org.

7.3 Uniform Preconditioning

The tests presented in this subsection illustrate the efficient solution of the system (7.3)
by Preconditioned Conjugate Gradient (PCG) with the preconditioner given in (7.4). We
introduce the matrices representing the bilinear forms defined in (4.6), (4.7), and also the
mass matrix for the BDM1 space. We denote by M the mass matrix on V h and by Ã the
stiffness matrix associated with ah(·, ·) on V h in (4.6), (4.7). We note that A, without the
divergence–free constraint, is spectrally equivalent to two scalar Laplacians.

It is known that the null space of b(·, ·) in (4.6) is made of vector fields that are curls of
continuous, piecewise quadratic functions vanishing on the boundary. We denote by Pcurl the
matrix representation of these curls in the BDM space. Namely,

curl(basis functions in Nh) = (basis functions in V h)Pcurl.

It is easy to see that

Aq = PT
curlMPcurl.

where Aq is the discretization of the Laplacian on Nh with homogeneous Dirichlet boundary
conditions.

The problem of finding the solution of (6.5) then amounts to solving the following alge-
braic system of equations

PT
curlÃPcurlU = PT

curlF. (7.3)

Here the superscript T means that the adjoint is taken with respect to the �2-inner product,
U is the vector containing the velocity degrees of freedom, and F is the vector representing
the right–hand side ( f , v) of the problem (4.6).

The matrix representation B of the preconditioner B described in the previous section has
the following form:

B = A−1
q PT

curlMÃ−1MPcurlA−1
q (7.4)

In the numerical experiments below we have used the preconditioned conjugate gradient
provided by MATLAB with the above preconditioner. We note that one may further make
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Table 3 Preconditioning results for square domain (top) and L-shaped domain (bottom)

J 0 1 2 3 4 5

Square domain
nit 4 4 4 5 5 4

ρ 0.016 0.023 0.031 0.034 0.033 0.031

L-shaped domain
nit 5 5 5 5 5 5

ρ 0.044 0.061 0.061 0.058 0.055 0.053

The PCG iterations are terminated when the relative residual is smaller than 10−6

the algorithm more efficient by incorporating approximations B̃ (for Ã−1) and Bq (for A−1
q )

in (7.4). In our tests the inverses needed to compute the action of the preconditoner, namely
A−1

q and Ã−1, are calculated by the MATLAB’s backslash “\” operator (which in turn calls
the direct solver from UMFPACK http://www.cise.ufl.edu/research/sparse/umfpack/). The
tests presented here exactly match the theory for the auxiliary space preconditioner given
in Sect. 6.3.

In summary, the action of the preconditioner requires the solution of systems correspond-
ing to 4 scalar Laplacians. It is also worth noting that suitable multigrid packages for per-
forming these tasks are available today.

The convergence rate results are summarized in Table 3. The legend for the symbols used
in the table is as follows: nit is the number of PCG iterations; ρ is the average reduction

per one such iteration defined as ρ =
[ ||rnit ||�2||r0||�2

]1/nit ; J is the refinement level, for which

h ≈ 2−J h0, where h0 is the characteristic mesh size on the coarsest grid. From the results in
Table 3, we can conclude that the preconditioner is uniform with respect to the mesh size. It
is also evident that this method is in fact quite efficient in terms of the number of iterations
and the reduction factor.

Let us point out that when the preconditioner is implemented in 3D the action of �h

requires an implementation of the action of L2-orthogonal (or orthogonal in equivalent inner
product) projection on the divergence free subspace V̊ h . This is done by solving an auxiliary
mixed FE discretization of the Laplacian, as discussed in Sect. 5 and in practice it can be
accomplished by considering a projection orthogonal in the inner product provided by the
lumped mass matrix for BDM. In such case the solution to the auxiliary mixed FE problem
corresponds to a solution of a system with an M-matrix and classical AMG methods [11]
AMG yield optimal solvers for such problems. The application of the preconditioner in the
3D case requires the (approximate) solution of 5 scalar Laplacians.

Such extensions to 3D and also efficient approximations to Ã−1 and A−1
q in (7.4) are

subject of current research and implementation and are to be included in a future release of
the Fast Auxiliary Preconditioning Package http://fasp.sf.net.
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8 Appendix: Proof of Proposition 4.3

We now state and prove a result, Proposition 8.1 given below, used in Sect. 4 to show Korn
inequality (cf. Lemma 4.2). After giving its proof, we comment briefly on how the result can
be applied to show the corresponding Korn inequality (4.13) (cf. Lemma 4.2) for d = 3.

Proposition 8.1 Let T be a triangle (or a tetrahedron for d = 3) with minimum angle θ > 0,
and let e be an edge (resp. face) of T . Then for every p > 2 and for every integer kmax there
exists a constant C p,θ,kmax such that

∫
e

v · (τ · n) ds ≤ C p,θ,kmax h−1/2
T ‖v‖0,e

(
hT ‖divτ‖0,T + h

d(p−2)
2p

T ‖τ‖0,p,T

)
(8.1)

for every τ ∈ (L p(�))d×d
sym having divergence in L2 and for every v ∈ Pkmax (T ).

Proof First we go to the reference element T̂ :
∣∣∣
∫
e

v · (τ · n) ds ≤ Cθ |e|
∣∣∣
∫
ê

v̂ · (τ̂ · n̂) dŝ
∣∣∣ ≤ Cθhd−1

e

∣∣∣
∫
ê

v̂ · (τ̂ · n̂) dŝ
∣∣∣ (8.2)

where v̂ and τ̂ are the usual covariant and contra-variant images of v and τ , respectively. And,
here and throughout his proof, the constants Cθ and Cθ,kmax may assume different values at
different occurrences. Note that v̂ will still be a vector-valued polynomial of degree ≤ kmax

and the space H(div, T ) is effectively mapped into H(div, T̂ ) by means of the contra-variant
mapping. Then for every component v̂ of v̂, we construct the auxiliary function ϕv as follows.
First we define ϕv on ∂ T̂ by setting it as equal to v̂ on ê and zero on the rest of ∂ T̂ . Then
we define ϕv in the interior using the harmonic extension. It is clear that ϕv will belong to
W 1,p′

(T̂ ) (remember that p > 2 so that its conjugate index p′ will be smaller than 2). Using
the fact that v̂ is a polynomial of degree ≤ kmax , it is not difficult to see that

‖ϕv‖W 1,p′
(T̂ ) ≤ Ĉθ,kmax ‖v̂‖0,ê. (8.3)

Integration by parts then gives∫
ê

v̂ · (τ̂ · n̂) dŝ =
∫

∂ T̂

ϕv · (τ̂ · n̂) dŝ

=
∫

T̂

∇ϕv : τ̂ dx̂ −
∫

T̂

ϕv · divτ̂ dx̂

≤ |ϕv|W 1,p′
(T̂ )‖τ̂‖

(L p(T̂ ))d×d
sym

+ ‖ϕv‖0,T̂ ‖divτ̂‖0,T̂

≤ Ĉ
(
‖v̂‖0,ê ‖τ̂‖

(L p(T̂ ))d×d
sym

+ ‖ϕv‖0,ê‖divτ̂‖0,T̂

)

≤ Ĉ ‖v̂‖0,ê

(
‖τ̂‖

(L p(T̂ ))d×d
sym

+ ‖divτ̂‖0,T̂

)
.

(8.4)

Then we recall the inverse transformations (from T̂ to T ):

‖v̂‖0,ê ≤ Cθh
− d−1

2
e ‖v‖0,e, ‖τ̂‖

(L p(T̂ ))d×d
sym

≤ Cθh
− d

p
T ‖τ‖

(L p(T ))d×d
sym
,

‖divτ̂‖0,T̂ ≤ Cθh
2−d

2
T ‖divτ‖0,T .
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Inserting this into (8.4) and then in (8.2) we have then∫
e

v · (τ · n) ds ≤ C p,θ,kmax hd−1
e h

− d−1
2

e ‖v‖0,e

(
h

− d
p

T ‖τ‖
(L p(T ))d×d

sym
+ h

2−d
2

T ‖divτ‖0,T

)
.

Now we note that

−1

2
+ d(p − 2)

2p
= d − 1 − d − 1

2
− d

p
,

and that

−1

2
+ 1 = d − 1 − d − 1

2
+ 2 − d

2
,

and the proof then follows immediately. ��
With this result in hand, we can show the Korn inequality (4.13) given in Lemma 4.2 for

d = 3. It is necessary to modify the proof only at two places: the definition of the space of
rigid motions on �, RM(�), and the application of Proposition 4.21. The space RM(�) is
now defined by:

RM(�) =
{

a + bx : a ∈ R
d b ∈ so(d)

}

with so(d) denoting the space of the skew-symmetric d × d matrices.
To prove (4.16) (and so conclude the proof of (4.13)), estimate (4.23) is replaced by

estimate (8.5) below, which is obtained as follows: first, by applying (8.1) (instead of (4.21))
from Proposition 8.1 to each e in the last term in (4.22) and then by using the generalized
Hölder inequality with the same exponents as for d = 2 (with q = 1/2 and r = 2p/(p − 2),
so that 1

p + 1
q + 1

r = 1)

∑
e∈Eo

h

∫
e

[[ vt ]] : {τ } ≤ C p,θ,kmax

∑
T ∈Th

∑
e∈∂T

h−1/2
T ‖[[ vt ]]‖0,e hT ‖divτ‖0,T

+C p,θ,kmax

∑
T ∈Th

∑
e∈∂T

h−1/2
T ‖[[ vt ]]‖0,e‖ h

d(p−2)
2p

T ‖τ‖0,p,T

≤ Ch |[[ vt ]]|∗ ‖divτ‖0,� (8.5)

+C
( ∑

e∈Eo
h

h−1
e |[[ vt ]]|20,e

)1/2( ∑
e∈Eo

h

‖τ‖p
0,p,T (e)

)1/p( ∑
e∈Eo

h

h
d(p−2)

2p r
e

)1/r

≤ C |[[ vt ]]|∗ h ‖divτ‖0,� + C |[[ vt ]]|∗ ‖τ‖0,p,� μ(�)
1/r

Here, as in estimate (4.23), μ(�) denotes the measure of the domain �, and the constant C
still depends on p, kmax , and on the maximum angle in the decomposition Th . The rest of
the proof of Lemma 4.2 proceeds as for d = 2.
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