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Abstract In this paper, we develop a multigrid method on unstructured shape-regular
grids. For a general shape-regular unstructured grid of O(N ) elements, we present
a construction of an auxiliary coarse grid hierarchy on which a geometric multigrid
method can be applied together with a smoothing on the original grid by using the
auxiliary space preconditioning technique. Such a construction is realized by a cluster
tree which can be obtained in O(N log N ) operations for a grid of N elements. This
tree structure in turn is used for the definition of the grid hierarchy from coarse to fine.
For the constructed grid hierarchy we prove that the convergence rate of the multigrid
preconditioned CG for an elliptic PDE is 1 − O(1/log N ). Numerical experiments
confirm the theoretical bounds and show that the total complexity is in O(N log N ).
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1 Introduction

We consider a sparse linear system

Au = f (1)

that arises from the discretization of an elliptic partial differential equation. In recent
decades, multigrid (MG) methods have been well established as one of the most
efficient iterative solvers for (1).Moreover, intensive research has been done to analyze
the convergence of MG. In particular, it can be proven that the geometric multigrid
(GMG) method has linear complexity O(N ) in terms of computational and memory
complexity for a large class of elliptic boundary value problems.

Roughly speaking, there are two different types of theories that have been developed
for the convergence of GMG. For the first kind theory that makes critical use of elliptic
regularity of the underlying partial differential equations as well as approximation and
inverse properties of the discrete hierarchy of grids, we refer to Bank and Dupont [1],
Braess and Hackbusch [4], Hackbusch [25], and Bramble and Pasciak [5]. The second
kind of theorymakesminor or no elliptic regularity assumption, we refer to Yserentant
[50], Bramble et al. [7], Bramble et al. [6], Xu [44,45] and Yserentant [51], and Chen
et al. [14,48].

The GMG method, however, relies on a given hierarchy of geometric grids. Such
a hierarchy of grids is sometimes naturally available, for example, due to an adaptive
grid refinement or can be obtained in some special cases by a coarsening algorithm
[15]. But in most cases in practice, only a single (fine) unstructured grid is given.
This makes it difficult to generate a sequence of nested meshes. To circumvent this
difficulty, non-nested geometricmultigrid and relevant convergence theories have been
developed. One example of such kind of theory is by Bramble et al. [8]. In this work,
optimal convergence theories are established under the assumption that a non-nested
sequence of quasi-uniform meshes can be obtained. Another example is the work by
Bank and Xu [2] that gives a nearly optimal convergence estimate for a hierarchical
basis type method for a general shape-regular grid in two dimensions. This theory
is based on non-nested geometric grids that have nested sets of nodal points from
different levels.

One feature in the aforementioned MG algorithms and their theories is that the
underlying multilevel finite element subspaces are not nested, which is not always
desirable from both theoretical and practical points of view. To avoid the non-
nestedness, many different MG techniques and theories have been explored in the
literature. Yserentant proved that the condition number remains uniformly bounded
independent of the size of the boundary elements as long as only the size of the elements
increases with their distance to the boundary [52]. The other theory was developed by
Xu [46] for a semi-nested MG method with an unstructured but quasi-uniform grid
based on an auxiliary grid approach. Instead of generating a sequence of non-nested
grids from the initial grid, this method is based on a single auxiliary structured grid
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A nearly optimal multigrid method for general unstructured grids 639

whose size is comparable to the original quasi-uniform grid. While the auxiliary grid
is not nested with the original grid, it contains a natural nested hierarchy of coarse
grids. Under the assumption that the original grid is quasi-uniform, an optimal con-
vergence theory was developed in [46] for second order elliptic boundary problems
with Dirichlet boundary conditions.

Totally nested multigrid methods can also be obtained for general unstructured
grids, for example, algebraic multigrid (AMG) methods. Most AMG methods,
although their derivations are purely algebraic in nature, can be interpreted as nested
MG when they are applied to finite element systems based on a geometric grid.
AMGmethods are usually very robust and converge quickly for Poisson-like problems
[9,33]. There are many different types of AMG methods: the classical AMG [9,35],
smoothed aggregation AMG [11,39,42], AMGe [29,30], unsmoothed aggregation
AMG [3,13] and many others. Highly efficient sequential and parallel implementa-
tions are also available for both CPU and GPU systems [10,26,43]. AMG methods
have been demonstrated to be one of the most efficient solvers for many practi-
cal problems [38]. Despite of the great success in practical applications, AMG still
lacks solid theoretical justifications for these algorithms except for two-level theories
[12,17,18,36,37,40,42]. For a trulymultilevel theory, using the theoretical framework
developed in [6,45], Vaněk et al. [41] provide a theoretical bound for the smoothed
aggregationAMGunder some assumption about the aggregations. Such an assumption
has been recently investigated in [12] for aggregations that are controlled by auxiliary
grids that are similar to those used in [46].

The aim of this paper is to extend the algorithm and theory in Xu [46] to shape
regular grids that are not necessarily quasi-uniform. The lack of quasi-uniformity of
the original grid makes the extension nontrivial for both the algorithm and the theory.
First, it is difficult to construct auxiliary hierarchical grids without increasing the grid
complexity, especially for grids on complicated domains. The way we construct the
hierarchical structure is to generate a cluster tree, based on the geometric information of
the original grid [20–23]. This auxiliary cluster tree has also been used as a coarsening
process of the UA-AMG [43]. Secondly, it is also not straightforward to establish
optimal convergence for the geometric multigrid applied to hierarchy of auxiliary
grids that can be highly locally refined.

The rest of the paper is organized as follows. In Sect. 2, we discuss some basic
assumptions on the given triangulation and review multigrid theories and the auxil-
iary space method. An abstract analysis is provided based on four assumptions. In
Sect. 3 we introduce the detailed construction of the structured auxiliary space by an
auxiliary cluster tree and an improved treatment of the boundary region for Neumann
boundary conditions. In Sect. 4, we describe the auxiliary space multigrid precondi-
tioner (ASMG) and estimate the condition number by verifying the assumptions of
the abstract theory. Finally, in Sect. 5, we provide some numerical examples to verify
our theory.

For simplicity of exposition, the algorithm and theory are presented in this paper
for the two dimensional case by using a quadtree. They can be generalized for the
three dimensional case without intrinsic difficulties by using an octree.
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2 Preliminaries

We present a multigrid method for second order elliptic problems on a complicated
domain � ⊂ R

d (1 ≤ d ≤ 3). Let V be the initial Hilbert space with inner product
a(·, ·) and energy norm ‖ · ‖A. The variational problem we want to solve is

Find v ∈ V s.t. a(u, v) := 〈Au, v〉 = 〈 f, v〉 ∀v ∈ V (2)

In order to simplify the presentation, we restrict ourselves to the Poisson problem
discretized by piecewise linear finite elements. Assume that the nodal basis functions
of V are {ϕi }i∈J and the local elements supporting patch of ϕi is ωi where J is the
node index set. For any v ∈ V , there exists ξ ∈ R

N such that v = ∑
i∈J ξiϕi . In this

case, the system matrix A has entries of the form

ai, j =
∫

�

(∇ϕi (x),∇ϕ j (x))dx

with basis functions ϕi (x) that are continuous and piecewise affine on triangles τν, ν ∈
I := {1, . . . , N } of the triangulation T of the polygonal and connected domain � ⊂
R
d ,

� =
⋃

ν∈I
τν

2.1 Properties of the triangulation

The triangulation is assumed to be conforming and shape-regular in the sense that
the ratio of the circumcircle and inscribed circle is bounded uniformly [16], and it
is a K-mesh in the sense that the ratio of diameters between neighboring elements is
bounded uniformly.All elements τi are assumed to be shape-regular but not necessarily
quasi-uniform, so the diameters can vary globally and allow a strong local refinement.

The vertices of the triangulation are denoted by (p j ) j∈J . Some of the vertices
are Dirichlet nodes, JD ⊂ J , where we impose essential Dirichlet boundary condi-
tions, and some are Neumann vertices, JN ⊂ J , where we impose natural Neumann
boundary conditions.

The following construction will be given for the case d = 2, but a generalisation
to d > 2 is straightforward .

For each of the triangles τi ∈ T , we use the barycenter

ξi := p1(τi ) + p2(τi ) + p3(τi )

3
,

where p1(τi ), p2(τi ), p3(τi ) ∈ R
2 are the three vertices of the triangle τi , as in Fig. 1.

NotationWe denote the minimal distance between the triangle barycenters of the grid
by
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A nearly optimal multigrid method for general unstructured grids 641

Ωτi ξ i
h

Fig. 1 Left the triangulation T of � with elements τi . Right the barycenters ξi (dots) and the minimal
distance h between barycenters (color figure online)

h := min
i, j∈I

‖ξi − ξ j‖2.

The diameter of � is denoted by

H := max
x,y∈�

‖x − y‖2.

In order to prove the desired nearly linear complexity estimate, we have to assume
that the refinement level of the grid is algebraically bounded in the following sense.

Assumption 1 We assume that H/h =∼ Nq for a small number q, e.g. q = 2.

The above assumption allows an algebraic grading towards a point but it forbids a
geometric grading. The assumption is sufficient but not necessary: the construction of
the auxiliary grids might still be of complexityO(N log N ) or less if Assumption 1 is
not valid, but it would require more technical assumptions in order to prove this.

2.2 Auxiliary space preconditioning theory

The auxiliary space method, developed in [32,46], is for designing preconditioners by
using the auxiliary spaces which are not necessarily subspaces of the original space.
Here, the original space is the finite element space V for the given grid T and the
preconditioner is the multigrid method on the sequence (V�)

J
�=1 of FE spaces for the

auxiliary grids (T�)
J
�=1.

The idea of the method is to generate an auxiliary space V with inner product
ã(·, ·) = 〈 Ã·, ·〉 and energy norm ‖ · ‖ Ã. Between the spaces there is a suitable linear
transfer operator 	 : V �→ V , which is continuous and surjective. 	t : V �→ V is the
dual operator of 	 in the default inner products

〈	t u, ṽ〉 = 〈u,	ṽ〉, for all u ∈ V, ṽ ∈ V .

In order to solve the linear system Ax = b, we require a preconditioner B defined
by

B := S + 	B̃	t , (3)

where S is the smoother and B̃ is the preconditioner of Ã.
The estimate of the condition number κ(BA) is given below.
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642 L. Grasedyck et al.

Theorem 1 Assume that there are nonnegative constants c0, c1, and cs , such that

1. the smoother S is bounded in the sense that

‖v‖A ≤ cs‖v‖S−1 ∀v ∈ V, (4)

2. the transfer operator 	 is bounded,

‖	w‖A ≤ c1‖w‖ Ã ∀w ∈ V, (5)

3. the transfer is stable, i.e. for all v ∈ V there exists v0 ∈ V and w ∈ V such that

v = v0 + 	w and ‖v0‖S−1 + ‖w‖ Ã ≤ c0‖v‖A, and (6)

4. the preconditioner B̃ on the auxiliary space is optimal, i.e. for any ṽ ∈ V , there
exists m1 > m0 > 0, such that

m0‖ṽ‖2
Ã

≤ (B̃ Ãṽ, ṽ) ≤ m1‖ṽ‖2
Ã
. (7)

Then, the condition number of the preconditioned systemdefined by (3) can be bounded
by

κ(BA) ≤ m1

m0
c20(c

2
s + c21). (8)

We also can combine the smoother S and the auxiliary grid correction multiplica-
tively with a preconditioner B in the form [27,28]

I − BcoA = (I − ST A)(I − BA)(I − SA) (9)

which leads to Algorithm 1. The combined preconditioner, under suitable scaling
assumptions performs no worse than its components.

Algorithm 1Multiplicative Auxiliary Space Iteration Step

Given S, B, and an initial iterate uk,0 := uk

(1) uk,1 := uk,0 − S(b − Auk,0);
(2) uk,2 := uk,1 − B(b − Auk,1);
(3) uk+1 := uk,2 − ST (b − Auk,2);
return Improved approximate solution uk+1.

Theorem 2 Suppose there exists ρ ∈ [0, 1) such that for all v ∈ V , we have

‖(I − SA)v‖2A ≤ ρ‖v‖2A,

then the multiplicative preconditioner Bco yields the bound

κ(BcoA) ≤ (1 − m1)(1 − ρ) + m1

(1 − m0)(1 − ρ) + m0
, (10)
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A nearly optimal multigrid method for general unstructured grids 643

for the condition number, and

κ(BcoA) ≤ κ(BA). (11)

According to Theorems 1 and 2, our goal is to construct an auxiliary space V in
which we are able to define an efficient preconditioner. The preconditioner will be
the geometric multigrid method on a suitably chosen hierarchy of auxiliary grids.
Additionally, the space has to be close enough to V so that the transfer from V to
V fulfils (5) and (6). This goal is achieved by a density fitting of the finest auxiliary
grid TJ to T . In order to prove (7), we use the multigrid theory for the auxiliary grids
{T�}J�=1 from the viewpoint of the method of subspace corrections.

2.3 An abstract multigrid theory

In the spirit of divide and conquer, we can decompose any space V as the summation
of subspaces V = ∑L

i=0 Vi , Vi ⊂ V . Since
∑L

i=0 Vi may not be a direct sum, the
decomposition u = ∑L

i=0 ui is not necessarily unique for u ∈ V .
We will use the following operators, for i = 1, . . . , L:

Qi : V → Vi the projection in the L2 inner product (·, ·);
Ii : Vi → V the natural inclusion to V ;
Pi : V → Vi the projection in the inner product (·, ·)A;
Ai : Vi → Vi the restriction of A to the subspace Vi ;
Ri : Vi → Vi an approximation of (Ai )

−1 which means the smoother;
Ti : V → Vi Ti = Ri Qi A = Ri Ai Pi .

For any u ∈ V and ui , vi ∈ Vi , these operators fulfil the trivial equalities

(Qiu, vi ) = (u, Iivi ) = (I ti u, vi ),

(Ai Piu, vi ) = a(u, vi ) = (Qi Au, vi ),

(Aiui , vi ) = a(ui , vi ) = (Aui , vi ) = (Qi AIi ui , vi ).

Assumewe know the value of uk , if we perform the subspace correction in a successive
way, it reads in operator form as

v0 = uk,

vi+1 = vi + Ii Ri Qi ( f − Avi ), i = 1, . . . , L ,

uk+1 = vL+1

The corresponding error equation is

(I − BA)u = u − uk+1 =
[

L∏

i=1

(I − Ii Ri Qi A)

]

(u − uk).
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Suppose thatwe have nested finite element spaces:V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VJ = V
and {ϕ�,i } as the basis functions ofV�. DefineVk,i := span{ϕk,i }. Then,∑�,i V�,i is the
decomposition of VJ . Then given v ∈ VJ , we have the decomposition v = ∑

�, j v�, j .
Similarly define P�,i as the projection from VJ to V�,i . In this case, the successive
subspace correction method for this decomposition is nothing but the simple Gauß–
Seidel iteration. This algorithm is sometimes called the backslash (\) cycle. A V-cycle
algorithm is obtained from the backslash cycle by performing more smoothings after
the coarse grid corrections. Such an algorithm, roughly speaking, is like a backslash
(\) cycle plus a slash (/) (a reversed backslash) cycle. It is simple to show that the
convergence of theV-cycle is a consequence of the convergence of the backslash cycle.
The detailed algorithm is given in Algorithm 2.

Algorithm 2 Geometric Multigrid Method

For � = 0, define B0 = A−1
0 . Assume that B�−1 : V�−1 → V�−1 is defined. We shall now define

B� : V� → V� which is an iterator for the equation of the form

A�u = f.

pre-smoothing: For u0 = 0 and k = 1, 2, . . . , ν

uk = uk−1 + R�( f − A�u
k−1)

Coarse grid correction: e�−1 ∈ V�−1 is the approximate solution of the residual equation A�−1e =
Q�−1( f − A�u

ν) by the iterator B�−1:

uν+1 = uν + e�−1 = uν + B�−1Q�−1(g − Auν).

post-smoothing: For k = ν + 2, 2, . . . , 2ν

uk = uk−1 + R�( f − A�u
k−1)

Now we present a convergence analysis based on three assumptions.

(T) Contraction of Subspace Error Operator: There exists ρ < 1 such that

‖I − Ti‖Ai ≤ ρ for all i = 1, . . . , L .

(A1) Stable Decomposition: For any v ∈ V , there exists a decomposition

v =
L∑

i=1

vi , vi ∈ Vi , i = 1, . . . , L , such that
L∑

i=1

‖vi‖2Ai
≤ K1‖v‖2A.

(A2) StrengthenedCauchy–Schwarz (SCS) Inequality:For any ui , vi ∈ Vi , i =
1, . . . , L

∣
∣
∣
∣
∣
∣

L∑

i=1

L∑

j=i+1

(ui , v j )A

∣
∣
∣
∣
∣
∣
≤ K2

(
L∑

i=1

‖ui‖2A
)1/2 ⎛

⎝
L∑

j=1

‖v j‖2A
⎞

⎠

1/2

.
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The convergence theory of the method is as follows.

Theorem 3 Let V = ∑L
i=1 Vi be a decomposition satisfying assumptions (A1) and

(A2), and let the subspace smoothers Ri satisfy (T). Then

∥
∥
∥
∥
∥

L∏

i=1

(I − Ii Ri Qi A)

∥
∥
∥
∥
∥

2

A

≤ 1 − 1 − ρ2

2K1(1 + (1 + ρ)2K 2
2 )

.

The proof can be found from [14,48], which is simplified by using the XZ identity
[49].

3 Construction of the auxiliary grid-hierarchy

In this section, we explain how to generate a hierarchy of auxiliary grids based on the
given (unstructured) grid T . The idea is to analyse and split the element barycenters
by their geometric position regardless of the initial grid structure. Our aim is to obtain
a structured hierarchy of grids that preserves some properties of the initial grid, e.g.
the local mesh size. A similar idea has already been applied in [19,31,43].

3.1 Clustering and auxiliary box-trees

We build an auxiliary tree structure by a geometrically regular subdivision of boxes.
For the initial step we choose a (minimal) square bounding box of the domain �:

B1 := [a1, b1) × [a2, b2) ⊃ �, |b1 − a1| = |b2 − a2|.

Define the level ofB1 to be g(B1) = 1. Thenwe subdivideB1 regularly, thus obtaining
four children B2

1,B2
2,B2

3,B2
4:

B2
2 = [a1, b′

1) × [a′
2, b2), B2

3 = [a′
1, b1) × [a′

2, b2),

B2
1 = [a1, b′

1) × [a2, b′
2), B2

4 = [a′
1, b1) × [a2, b′

2),

where a′
1 = b′

1 := (a1 + b1)/2 and a′
2 = b′

2 := (a2 + b2)/2. The level of B2
i is

g(B2
i ) = g(B1) + 1 = 2, where i = 1, 2, 3, 4. Finally, we apply the same subdivision

process recursively, starting with B2
1, . . . ,B2

4 and define the level of the boxes B�
i

recursively (cf. Fig. 2). This yields an infinite tree Tbox with root B1. Letting B�
j

denote a box in this tree, we can define the cluster t , which is a subset of I, by

t�j := t (B�
j ) := {i ∈ I | ξi ∈ B�

j }.

This yields an infinite cluster tree with root t (B1). We construct a finite cluster tree TI
by not subdividing nodes which are below a minimal cardinality nmin, e.g. nmin := 3.
Define the nodes which have no child nodes as the leaf nodes. The cardinality #t�j =
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B

Fig. 2 Tree of regular boxes with root B1. The black dots mark the corresponding barycenters ξi of the
triangles τi . Boxes with less than three points ξi are leaves

#t (B�
j ) is the number of the barycenters in B�

j . Leaves of the cluster tree contain at
most nmin indices. For any leaf node, its parent node contains at least 4 barycenters,
then the total number of leaf nodes is bounded by the number of barycenters N .

Remark 1 The size of a leaf box B j can be much larger than the size of triangles τ j
that intersect with B j since a large box B j may only intersect with one very small
element and will not be further subdivided.

Lemma 1 Suppose Assumption 1 holds, the complexity for the construction of TI is
O(qN log N ).

Proof First, we estimate the depth of the cluster tree. Let t = t (Bν) ∈ TI be a node of
the cluster tree and #t > nmin. By definition the distance between two nodes ξi , ξ j ∈ t
is at least

‖ξi − ξ j‖2 ≥ h.

Therefore, the box Bν has a diameter of at least h. After each subdivision step the
diameter of the boxes is exactly halved. Let � denote the number of subdivisions after
which Bν was created. Then

diam(Bν) = 2−�diam(B1).

Consequently, we obtain

h ≤ diam(Bν) = 2−�diam(B1) ≤ 2−�
√
2H

so that by Assumption 1,

� � log(H/h) =∼ q log N .

Therefore the depth of TI is in O(q log N ).
Next, we estimate the complexity for the construction of TI . The subdivision of a

single node t ∈ TI and corresponding box Bν is of complexity #t . On each level of
the tree TI , the nodes are disjoint, so that the subdivision of all nodes on one level is
of complexity at most O(N ). For all levels this sums up to at most O(qN log N ).

Remark 2 The boxes used in the clustering can be replaced by arbitrary shaped ele-
ments, e.g. triangles/tetrahedra or anisotropic elements—depending on the application
or operator at hand. For ease of presentation we restrict ourselves to the case of boxes.
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Remark 3 The complexity of the construction can also be bounded from below by
O(N log N ), as is the case for a uniform (structured) grid. However, this complex-
ity arises only in the construction step and this step will typically be of negligible
complexity.

Notice that the tree of boxes is not the regular grid that we need for the multigrid
method. A further refinement as well as deletion of elements is necessary.

3.2 Closure of the auxiliary box-tree

The hierarchy of box-meshes from Fig. 2 is exactly what we want to construct: each
box has at most one hanging node per edge, namely, the fineness of two neighbouring
boxes differs by at most one level. In general this is not fulfilled.

We construct the grid hierarchy of nested uniform meshes starting from a coarse
mesh σ (0) consisting of only a single box B1 = [a1, b1)×[a2, b2), the root of the box
tree. All boxes in the meshes σ (1), . . . , σ (J ) to be constructed will either correspond to
a cluster t in the cluster tree or will be created by refinement of a box that corresponds
to a leaf of the cluster tree.

Let � ∈ {1, . . . , J } be a level that is already constructed (the trivial start � = 1 of
the induction is given above).

We mark all elements of the mesh which are then refined regularly. Let B�
ν be an

arbitrary box in σ (�). The box B�
ν corresponds to a cluster tν = t (B�

ν) ∈ TI . The
following two situations can occur:

1. (Mark) If #tν > nmin then B�
ν is marked for refinement.

2. (Retain) If #tν ≤ nmin, e.g. tν = ∅, then B�
ν is not marked in this step.

After processing all boxes on level �, it may occur that there are boxes on level
� − 1 that would have more than one hanging node on an edge after refinement of
the marked boxes, cf. Fig. 3. Since we want to avoid this, we have to perform a
closure operation for all such elements and for all coarser levels � − 1, . . . , 1.

3. (Close) Let L(�−1) be the set of all boxes on level � − 1 having too many hanging
nodes. All of these are marked for refinement. By construction a single refinement
of each box is sufficient. However, a refinement on level �− 1 might then produce
too many hanging nodes in a box on level � − 2. Therefore, we have to form the
lists L( j), j = � − 1, . . . , 1 of boxes with too many hanging nodes successively
on all levels and mark the elements.

4. (Refine) At last we refine all boxes (on all levels) that are marked for refinement.

The result of the closure operation is depicted in Fig. 4.
Each of the boxes in the closed grids lives on a unique level � ∈ {1, . . . , J }. It is

important that a box is either refined regularly (split into four successors on the next
level) or it is not refined at all. For each box that is marked in step 1, there are at most
O(log N ) boxes marked during the closure step 3.

Lemma 2 The complexity for the construction and storage of the (finite) box tree with
boxes B�

ν and corresponding cluster tree TI with clusters tν = t (B�
ν) is of complexity

O(N log N ), where N is the number of barycenters, i.e., the number of triangles in
the triangulation τ .
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Fig. 3 The subdivision of the marked (red) box on level � would create two boxes (blue) with more than
one hanging node at one edge (color figure online)

Fig. 4 The subdivision of the red box makes it necessary to subdivide nodes on all levels (color figure
online)

Proof For the level � of the tree, let n� be the number of leaf boxes and m� be the
boxes which have child boxes. Accordingly, the total number of the boxes on level �

is n� + m�. By definition,

n� + m� = 4m�−1,

where � ≥ 2 and n1 + m1 = m1 = 1. Since
∑J

�=1 n� � N , we have

N �
J∑

�=1

n� =
J∑

�=2

(4m�−1 − m�) = 3
J∑

�=1

m� + 1.

As a result,

J∑

�=1

m� � N .

The total work for generating the tree is
∑J

�=1 n� + m� � N .
Given �, let α� denote the number of boxes in L(�−1) (the set of boxes that have

more than 1 hanging node). Since every box in L(�−1) has to be a leaf box, we have
α� ≤ n�. As the process of closing each hanging node will go through at most two
boxes in any given level, the total number of the marked boxes in this closure process
is bounded by

J∑

�=1

2Jα� � J N � N log N .
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A nearly optimal multigrid method for general unstructured grids 649

3.3 Construction of a conforming auxiliary grid hierarchy

At last, we create a hierarchy of nested conforming triangulations by subdivision
of the boxes and by discarding those boxes that lie outside the domain �. For any
box Bν there can be at most one hanging node per edge. The possible situations and
corresponding local closure operations are presented in Fig. 5.

The closure operation introduces new elements on the next finer level.
The final hierarchy of triangular grids σ (1), . . . , σ (J ) is nested and conforming

without hanging nodes. All triangles have a minimum angle of 45 degrees, i.e., they
are shape-regular, cf. Fig. 6.

Fig. 5 Hanging nodes can be treated by a local subdivision within the box Bν . The top row shows a box
with 1, 2, 2, 3, 4 hanging nodes, respectively, and the bottom row shows the corresponding triangulation of
the box (color figure online)

level 1 level 2 level 3 level 4 level 5

Fig. 6 The final hierarchy of nested grids. Red edges were introduced in the last (local) closure step (color
figure online)

The triangles in the quasi-regular meshes σ (1), . . . , σ (J ) have the following prop-
erties:

1. All triangles in σ (1), . . . , σ (J ) that have children which are themselves further
subdivided, are refined regularly (four congruent successors) as depicted here.

σ i iσ’

2. Each triangle σi ∈ σ ( j) that is subdivided but not regularly refined, has successors
σ ′
i that will not be further subdivided.

The hierarchy of grids constructed so far covers on each level the whole box B.
This hierarchy has now to be adapted to the boundary of the given domain �. In order
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650 L. Grasedyck et al.

Fig. 7 A triangulation of the
Baltic sea with local refinement
and small inclusions

to explain the construction we will consider the domain � and triangulation T (5837
triangles) from Fig. 7.

The triangulation consists of shape-regular elements, it is locally refined, it contains
many small inclusions, and the boundary � of the domain � is rather complicated.

3.4 Adaptation of the auxiliary grids to the boundary

TheDirichlet boundary: On theDirichlet boundary wewant to satisfy homogeneous
boundary conditions (b.c.), i.e., u|� = 0 (non-homogeneous b.c. can trivially be trans-
formed to homogeneous ones). On the given fine triangulation τ this is achieved by use
of basis functions that fulfil the b.c. Since the auxiliary triangulations σ (1), . . . , σ (J )

do not necessarily resolve the boundary, we have to use a slight modification.

Definition 1 (Dirichlet auxiliary grids) We define the auxiliary triangulations T D
� by

T D
� := {τ ∈ σ (�) | τ ⊂ �}, � = 1, . . . , J.

In Fig. 8 the Dirichlet auxiliary grids are formed by the blue boxes. All other
elements (light green and dark green) are not used for the Dirichlet problem. On an
auxiliary grid we impose homogeneous Dirichlet b.c. on the boundary

�� := ∂�D
� , �D

� := ∪τ∈T D
�

τ̄ .
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5level4level3level

Fig. 8 The boundary � of � is drawn as a red line, boxes non-intersecting � are light green, boxes
intersecting � are dark green, and all other boxes (inside of �) are blue (color figure online)

5level4level3level

Fig. 9 The boundary � of � is drawn as a red line, boxes non-intersecting � are light green, and all other
boxes (intersecting �) are blue (color figure online)

The auxiliary grids are still nested, but the area covered by the triangles grows with
increasing the level number:

�D
1 ⊂ · · · ⊂ �D

J ⊂ �, �D
� :=

⋃
{τ ∈ T D

� }

The Neumann boundary On the Neumann boundary we want to satisfy natural (Neu-
mann) b.c., i.e., ∂nu|� = 0. For the auxiliary triangulations σ (1), . . . , σ (J ), we will
approximate the true b.c. by the natural b.c. on an auxiliary boundary.

Definition 2 (Neumann auxiliary grids) Define the auxiliary triangulations T N
1 , . . . ,

T N
J by

T N
� := {τ ∈ σ (�) | τ ∩ � �= ∅}, � = 1, . . . , J.

In Fig. 9 the Neumann auxiliary grids are formed by the blue boxes. All other
elements (light green) are not used for the Neumann problem. On an auxiliary grid we
impose natural Neumann b.c., the auxiliary grids are non-nested. The area covered by
the triangles grows with decreasing level number:

� ⊂ �N
J ⊂ · · · ⊂ �N

1 , �N
� :=

⋃
{τ ∈ T N

� }
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Fig. 10 The finest auxiliary grid σ (10) contains elements of different size. Left Dirichlet b.c. (852 degrees
of freedom), right Neumann b.c. (2100 degrees of freedom) (color figure online)

Remark 4 (Mixed Dirichlet/Neumann b.c.) The definition of the grids for mixed
boundary conditions of Dirichlet (on �D) and Neumann type we use the grids

T M
� := {τ ∈ σ (�) | τ ∩ � �= ∅ and τ ∩ �D = ∅}, � = 1, . . . , J.

The b.c. on the auxiliary grid are of Neumann type except for neighbours of boxes
σ ∩ �D �= ∅ where essential Dirichlet b.c. are imposed (Fig. 10).

3.5 Near boundary correction

Since the boundaries of different levels do not coincide, the near boundary error cannot
be reduced very well by the standard multigrid method for the Neumann boundary
condition. So we introduce a near-boundary region �(�, j) where a correction for the
boundary approximation will be done. The near-boundary region is defined in layers
around the boundary ��:

Definition 3 (Near-boundary region) We define the j th near-boundary region T(�, j)

on level � of the auxiliary grids by

T(�,0) := {τ ∈ T� | dist(��, τ ) = 0},
T(�,i) := {τ ∈ T� | dist(T(�,i−1), τ ) = 0}, i = 1, . . . , j.

The idea for solving the linear system on level � is to perform a near-boundary
correction after the coarse grid correction. The errors introduced by the coarse grid
correction is eliminated by solving the subsystem for the degrees of freedom in the
near-boundary region T(�, j). The extra computational complexity is O(N ) because
only the elements which are close to the boundary are considered.
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A nearly optimal multigrid method for general unstructured grids 653

Definition 4 (Partition of degrees of freedom) Let J� denote the index set for the
degrees of freedom on the auxiliary grid T�. We define the near-boundary degrees of
freedom by

J�, j := {i ∈ J� | i belongs to an element τ ∈ T(�, j)}.

Let (u)i∈J�
be a coefficient vector on level � of the auxiliary grids. Then we extend

the standard coarse grid correction by the solve step

r� := f − A�u�, u�|J�, j := (A�|J�, j×J�, j )
−1r�|J�, j .

The small system A�|J�, j of near-boundary elements is solved by anH-matrix solver,
cf. [24].

Algorithm 3 Auxiliary Space MultiGrid

For � = 0, define B0 = A−1
0 . Assume that B�−1 : V�−1 → V�−1 is defined. We shall now define

B� : V� → V� which is an iterator for the equation of the form

A�u = f.

Pre-smoothing: For u0 = 0 and k = 1, 2, . . . , ν

uk = uk−1 + R�( f − A�u
k−1)

Coarse grid correction: e�−1 ∈ V�−1 is the approximate solution of the residual equation A�−1e =
Q�−1( f − A�u

ν) by the iterator B�−1:

uν+1 = uν + e�−1 = uν + B�−1Q�−1(g − A�u
ν).

Near boundary correction:

uν+2 = uν+1 + u�|J�, j
= uν+1 +

(
A�|J�, j×J�, j

)−1
( f − A�u

ν+1).

Post-smoothing: For k = ν + 3, . . . , 2ν + 3

uk = uk−1 + R�( f − A�u
k−1)

4 Convergence of the auxiliary grid method

In this section, we investigate and analyze the new algorithm by verifying the assump-
tions of the theorem of the auxiliary grid method.

4.1 Overall algorithm

Based on the auxiliary hierarchy we constructed in Sect. 3, we can define the auxiliary
space preconditioner (3) and (9) as follows.
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Let the auxiliary space V = VJ and Ã be generated from (2). Since we already
have the hierarchy of grids {V�}J�=1, we can apply MG on the auxiliary space VJ

as the preconditioner B̃. On the space V , we can apply a traditional smoother S, e.g.
Richardson, Jacobi, orGauß–Seidel. For the stiffnessmatrix A = D−L−U (diagonal,
lower and upper triangular part), thematrix representation of the Jacobi iteration is S =
D−1 and for theGauß–Seidel iteration it is S = (D−L)−1. (More generally, one could
use any smoother that features the spectral equivalence ‖v‖S−1 =∼‖ h−1v ‖2

L2(�)
.)

The auxiliary grid may be over-refined, it can happen that an element τi ∈ T
intersects much smaller auxiliary elements τ J

j ∈ TJ :

τi ∩ τ J
j �= ∅, hτ J

j
� hτi but hτ J

j
�=∼ hτi . (12)

In this case, we do not have the local approximation and stability properties for the
standard nodal interpolation operator. Therefore, we need a stronger interpolation
between the original space and the auxiliary space. This is accomplished by the Scott–
Zhang quasi-interpolation operator

	 : H1(�) → V

for a triangulation T [34]. Let {ψi } be an L2-dual basis to the nodal basis {ϕi }. We
define the interpolation operator as

	v(x) :=
∑

i∈J
ϕi (x)

∫

�

ψi (ξ)v(ξ)dξ.

By definition, 	 preserves piecewise linear functions and satisfies (cf. [34]) for all
v ∈ H1(�)

|	v|21,� +
∑

τ∈T
h−2

τ ‖(v − 	v)‖20,τ � |v|21,�. (13)

We define the new interpolation	 from the auxiliary space V to V by the Scott-Zhang
interpolation 	 : V → V and the reverse interpolation 	̃ : V → V .

Then we can apply Theorem 1 for V = VJ . In order to estimate the condition
number, we need to verify that the multigrid preconditioner B̃ on the auxiliary space
is bounded and the finest auxiliary grid and corresponding FE space we constructed
yields a stable and bounded transfer operator and smoothing operator.

4.2 Convergence of the MG on the auxiliary grids

Firstly, we prove the convergence of the multigrid method on the auxiliary space. For
the Dirichlet boundary, we have the nestedness

�D
1 ⊂ · · · ⊂ �D

J ⊂ �,
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which induces the nestedness of the finite element spaces defined on the auxiliary
grids T D

� , � = 1, . . . , J :

V1 ⊂ V2 ⊂ · · · ⊂ VJ .

In order to avoid overloading the notation, we will skip the superscript D in the
following.

In order to prove the convergence of the local multilevel methods by Theorem 3,
we only need to verify the assumptions for the decomposition of

VJ =
J∑

�=1

∑

k∈Ñ�

V�,k . (14)

where

Ñ� = {k ∈ J�|k ∈ J�\J�−1 or ϕk,� �= ϕk,�−1}.

Since T� ⊂ σ (�) is the local refinement of T�−1, the size of the triangles in T� may be
different. We denote T̄� as a refinement of the grid T� where all elements are regularly
refined such that all elements from T̄� are congruent to the smallest element of T�. The
finite element spaces corresponding to T̄� are denoted by V̄�. In the triangulations T̄�

we have

τ ∈ T̄� ⇒ hτ ∼ 2−�.

For an element τ ∈ T� we denote by gτ the level number of the triangulation T̄gτ to
which τ belongs, i.e. hτ ∼ 2−gτ . For any vertex pi , if i ∈ J� but i /∈ J�−1, we define
gpi = �. The following properties about the generation of elements or vertices are
[14,48]

τ ∈ T̄�, if and only if gτ = �;
i ∈ J�, if and only if gpi ≤ �;

For τ ∈ T̄�, max
i∈J (τ )

gpi = � = gτ ,

where J (τ ) is the set of vertices of τ ∈ T̄�.
With the space decomposition (14), we can verify the assumptions of Theorem 3.

4.2.1 Stable decomposition: Proof of (A1)

The purpose of this subsection is to prove the decomposition is stable.

Theorem 4 For any v ∈ V , there exist function v�
i ∈ V�,i , i ∈ Ñ�, � = 1, . . . , J , such

that
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v =
J∑

�=1

∑

i∈Ñ�

v�
i and

J∑

�=1

∑

i∈Ñ�

‖v�
i ‖2A � log(N )‖v‖2A. (15)

Proof Following the argument of [14,48], we define the Scott-Zhang interpolation
between different levels 	� : V�+1 → V�, 	L : VL → VL , and 	0 : V1 → 0.

By the definition, we can define the decomposition as

v =
J∑

�=1

v�, v� = (	� − 	�−1)v ∈ V�.

Assume v� = ∑
i∈J�

ξ�,iϕ
�
i , where v�

i = ξ�,iϕ
�
i ∈ V�,i . Then,

‖v�
i ‖20 = ‖v�

i ‖20,ω�
i

�
∑

τ∈ω�
i

hdτ |v�(pi )|2 � ‖v�‖2
0,ω�

i
= ‖(	� − 	�−1)v‖2

0,ω�
i
.

where ω�
i is support of ϕ�

i and the center vertex is pi .
By the inverse inequality, we can conclude

∑

i∈J�

‖v�
i ‖2A �

∑

i∈J�

∑

τ∈ω�
i

h−2
τ ‖v�

i ‖20,τ �
∑

τ∈T�

h−2
τ ‖(	� − 	�−1)v‖20,τ .

Invoking the approximability and stability and following the same argument of Lemma
6, we have

∑

τ∈T�

h−2
τ ‖(v − 	�v)‖20,τ � |v|21,��+1

and ‖	�v‖20,��
� ‖v‖20,��+1

.

So,

∑

τ∈T�

h−2
τ ‖(	� − 	�−1)v‖20,τ =

∑

τ∈T�

h−2
τ ‖	�(I − 	�−1)v‖20,τ

�
∑

τ∈T�

h−2
τ ‖(I − 	�−1)v‖20,ω�

τ
�

∑

τ∈T�

h−2
τ ‖(I − 	�−1)v‖20,ω̃�

�
∑

τ∈T�−1

h−2
τ ‖(I − 	�−1)v‖20,τ � |v|21.

where ω�
τ is the union of the elements in � that intersect with τ ∈ T� and ω̃�

τ is the
union of the elements in T�−1 that intersect with ω�

τ . Therefore,

J∑

�=1

∑

i∈Ñ�

‖v�
i ‖2A �

J∑

�=1

∑

τ∈T�

h−2
τ ‖(	� − 	�−1)v‖20,τ � J |v|21 � log(N )|v|21.
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4.2.2 Strengthened Cauchy–Schwarz inequality: Proof of (A2)

In this subsection, we establish the strengthened Cauchy–Schwarz inequality for the
space decomposition (14). Assuming there is an ordering index set � = {α|α =
(�α, kα), kα ∈ Ñ�, �α = 1, . . . , J }. Define the ordering as follows. For any α, β ∈ �,
if �α > �β or �α = �β, kα > kβ , then, α > β. The strengthened Cauchy–Schwarz
inequality is given as follows.

Theorem 5 For any uα = v�
k ∈ Vα = V�,i , vβ = vmj ∈ Vβ = Vm, j , α = (�, k), β =

(m, j) ∈ �, we have

∣
∣
∣
∣

∑

α∈�

∑

β∈�,β>α

(uα, vβ)A

∣
∣
∣
∣ �

(
∑

α∈�

‖uα‖2A
)1/2

⎛

⎝
∑

β∈�

‖uβ‖2A
⎞

⎠

1/2

.

In order to prove the theorem, we need the following lemma:

Lemma 3 (SCS inequality for quasi-uniform meshes) For any ui ∈ V̄i , v j ∈ V̄ j , we
have

(ui , v j )1 �
(
h j

hi

)1/2

|ui |1(h−1
j ‖v j‖0).

The proof of the lemma follows from Lemma 4.26 in [47] and Lemma 4.5 in [48].
Now we can prove the Theorem 5.

Proof For any α ∈ �, we denote by

n(α) = {β ∈ �|β > α,ωβ ∩ ωα �= ∅}, vα
k =

∑

β∈n(α),gβ=k

vβ.

where ωα is the support of the Vα and gα = maxτ∈ωα gτ .
Since, the mesh is a K-mesh, for any τ ⊂ ωα , we have

(uα, vα
k )1,τ �

(
hk
hgα

)1/2

|uα|1,τh−1
k ‖vα

k ‖0,τ

So,

(ui , v
α
k )1,ωα =

∑

τ⊂ωi

(ui , v
α
k )1,τ

�
∑

τ⊂ωα

(
hk
hgα

)1/2

|uα|1,τh−1
k ‖vα

k ‖0,τ

≤
(

hk
hgα

)1/2

|uα|1,ωαh
−1
k

⎛

⎝
∑

β∈n(α),gβ=k

‖vβ‖20,ωα

⎞

⎠

1/2

.

123



658 L. Grasedyck et al.

Then fix uα and consider

∣
∣
∣
∣
∣
∣

⎛

⎝uα,
∑

β∈�,β>α

vβ

⎞

⎠

A

∣
∣
∣
∣
∣
∣
=∼

∣
∣
∣
∣
∣
∣

⎛

⎝uα,
∑

β∈n(α)

vβ

⎞

⎠

1,ωα

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

⎛

⎝uα,

J∑

k=gα

∑

β∈n(α)

vβ

⎞

⎠

1,ωα

∣
∣
∣
∣
∣
∣

�
J∑

k=gα

|(uα, vα
k )1,ωα |

�
J∑

k=gα

(
hk
hgα

)1/2

|uα|1,ωαh
−1
k

⎛

⎝
∑

gβ=k

‖vβ‖20,ωα

⎞

⎠

1/2

We sum up the uα level by level,

J∑

�=1

∑

gα=�

∣
∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎜
⎝uα,

∑

β∈�
β>α

vβ

⎞

⎟
⎟
⎠

A

∣
∣
∣
∣
∣
∣
∣
∣

�
J∑

�=1

∑

gα=�

⎡

⎢
⎢
⎢
⎣

J∑

k=�

(
hk
h�

) 1
2 |uα|1,ωαh

−1
k

⎛

⎜
⎜
⎝

∑

β∈n(α)
g j=k

‖v j‖20,ωα

⎞

⎟
⎟
⎠

1
2
⎤

⎥
⎥
⎥
⎦

�
J∑

�=1

J∑

k=�

⎛

⎝hk
h�

∑

gα=�

|uα|21,ωα

⎞

⎠

1
2

⎛

⎜
⎜
⎝h−2

k

∑

gα=�

∑

β∈n(α)
gβ=k

‖v j‖20,ωα

⎞

⎟
⎟
⎠

1
2

�
J∑

�=1

J∑

k=�

(
hk
h�

) 1
2

⎛

⎝
∑

gα=�

|uα|21,ωα

⎞

⎠

1
2
⎛

⎝
∑

gα=�

∑

gβ=k

h2�
h2k

|vβ |21,ωα

⎞

⎠

1
2

�

⎛

⎝
J∑

�=1

∑

gα=�

|uα|21
⎞

⎠

1
2
⎛

⎝
J∑

�=1

J∑

k=�

∑

gα=�

∑

gβ=k

h2�
h2k

|vβ |21,ωα

⎞

⎠

1
2

�

⎛

⎝
J∑

�=1

∑

gi=�

‖ui‖2A
⎞

⎠

1
2
⎛

⎝
J∑

k=1

k∑

�=1

h2�
h2k

∑

gβ=k

|vβ |21
⎞

⎠

1
2

.

�

⎛

⎝
J∑

�=1

∑

gi=�

‖ui‖2A
⎞

⎠

1
2
⎛

⎝
J∑

k=1

∑

gβ=k

‖vβ‖2A
⎞

⎠

1
2

.

This gives us the desired estimate.

The Gauß–Seidel method as the smoother means choosing the exact inverse for
each of the subspaces V�,k . Therefore, the assumption of the smoother is satisfied as
well. Consequently, we have the uniform convergence of the multigrid method on the
auxiliary grid.
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Theorem 6 The multigrid method on the auxiliary grid based on the space decom-
position (14) is nearly optimal, the convergence rate is bounded by 1 − 1

1+C log(N )
.

4.2.3 Condition number estimation

Now, we estimate condition number of the auxiliary space preconditioner by verifying
the assumptions in Theorem 1.

The assumption (4) is the continuity of the smoother S.Weprove thefirst assumption
in Theorem 1 for the Jacobi and Gauß–Seidel iteration. For the Jacobi method, the
square of the energy norm can be computed by summing local contributions from the
cells τi of the mesh T :

‖v‖2A =
∥
∥
∥
∥

∑

i∈J
ξiϕi

∥
∥
∥
∥

2

A
= a

⎛

⎝
∑

i∈J
ξiϕi ,

∑

j∈J
ξ jϕ j

⎞

⎠ =
∑

i∈J

∑

ωi∩ω j �=∅
a(ξiϕi , ξ jϕ j )

≤
∑

i∈J

∑

ωi∩ω j �=∅

1

2
(‖ξiϕi‖2A + ‖ξ jϕ j‖2A) ≤ K

∑

i∈J
‖ξiϕi‖2A = K 〈Dv, v〉,

where K is the maximal number of non-zeros in a row of A. Thus the choice cs = K
fulfills the continuity assumption. The continuity of the Gauß–Seidel method can also
be proved.

Lemma 4 (Continuity for Gauß–Seidel) The stiffness matrix A = D − L −U fulfills

1

K
〈(D − L)ξ, ξ 〉 ≤ 〈Dξ, ξ 〉 ≤ 2〈(D − L)ξ, ξ 〉, ξ ∈ R

N . (16)

In order to prove assumptions (5) and (6) , we need the following lemmas for the
transfer operator between V and V .

Lemma 5 (Local stability property) For any auxiliary space function v ∈ Ṽ and any
element τ ∈ T , the quasi-interpolation 	 satisfies

|	v|k,τ � h j−k
τ |v| j,ωτ , j, k ∈ {0, 1},

where ωτ is the union of elements in the auxiliary grid T that intersect with τ .

Lemma 6 For any auxiliary element function v ∈ V the reverse interpolation oper-
ator 	̃ satisfies

∑

τ∈T
h−2

τ ‖(v − 	̃v)‖20,τ � |v|21,� and |	̃v|21,�J
� |v|21,�. (17)

Proof The proof follows an argument presented in Xu [46]. Let T̂ be the set of the
elements in T which do not intersect with ∂�J , i.e.

T̂ = {τ |τ ∈ T , τ ∈ �J τ ∩ ∂�J = ∅}, �̂ =
⋃

τ∈T̂
τ̄ .
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Then,

∑

τ∈T
h−2

τ ‖(v − 	̃v)‖20,τ ≤
∑

τ∈T̂
h−2

τ ‖(v − 	̃v)‖20,τ +
∑

τ∈T \T̂
h−2

τ ‖v‖20,τ

+
∑

τ∈T \T̂
h−2

τ ‖	̃v‖20,τ .

For any element τ ∈ T̂ , ωτ is the union of elements in the auxiliary grid TJ that
intersect with τ ,

h−2
τ ‖(v − 	̃v)‖20,τ �

∑

τ̃⊂ωτ

h−2
τ̃

‖(v − 	̃v)‖20,τ̃ � |v|21,ωτ
(18)

So,

∑

τ∈T̂
h−2

τ ‖(v − 	̃v)‖20,τ �
∑

τ∈T̂
|v|21,ωτ

� |v|21,�J
≤ |v|21,�.

By the Poincaré inequality and scaling, if Gη is a reference square (d = 2) or a
cube (d = 3) of side length η, then

η−2‖w‖20,Gη �
∫

Gη

|∇w|2dx

holds for all functions w vanishing on one edge of Gη. For any τ ∈ T \T̂ , by covering
τ with subregion which can be mapped onto Gητ , ητ =∼ hτ , we can conclude that

∑

τ∈T \T̂
h−2

τ ‖w‖20,τ �
∑

τ∈T \T̂
|w|21,Gητ � |w|21,�.

Applying the above estimate with w = v and w = 	̃v, one has

∑

τ∈T \T̂
h−2

τ ‖v‖20,τ +
∑

τ∈T \T̂
h−2

τ ‖	̃v‖20,τ � |v|21,� + |	̃v|21,� � |v|21,�.

For the second inequality,

|	̃v|21,�J
� |v|21,�J

� |v|21,�

So, we have the desired estimate.

We can now verify the remaining assumptions of Theorem 1.
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Lemma 7 For any v ∈ Vp, we have

|	v|1,� � |v|1,�J .

Proof By the local stability of 	,

|	v|21,� =
∑

τ∈T
|	v|21,τ �

∑

τ∈T
|v|21,ωτ

� |v|21,� = |v|21,�J

The desired estimate then follows.

Lemma 8 For any v ∈ V , there exists v0 ∈ V and w ∈ Vp such that

‖v0‖2S−1 + |w|21,�p
� |v|21,�.

Proof For any v ∈ V , let w := 	̃v and v0 = v − 	w, then

‖v0‖2S−1 + |w|21,�J
�

∑

τ∈T
h−2

τ ‖v − 	w‖20,τ + |w|21,�J

≤
∑

τ∈T
h−2

τ ‖v − 	̃v‖20,τ +
∑

τ∈T
h−2

τ ‖w − 	w‖20,τ + |w|21,�J

� |v|21,�.

Theorem 7 If the multigrid method on the Dirichlet auxiliary grid is the precondi-
tioner B̃ on the auxiliary space and the ASMG preconditioner defined by (3) or (9),
then

κ(BA) � log(N ).

5 Numerical results

The numerical tests in this section are all performed on a SunFire with a 2.8GHz
Opteron processor and sufficient main memory. Although the tests are done using
only a single processor with access to all the memory, there might be some undesirable
scaling effects when using a large portion of the available memory due to the speed
of memory access. Therefore, the timings for larger problems are slightly worse than
in theory (memory used and flops counted).

In order to compare our code we need a reference point, and this reference is a
straightforward geometric multigrid method on a structured grid, where we do not
exploit the structure except for it to be a geometric multigrid hierarchy. This means
we setup the stiffness matrices as well as prolongation and restriction matrices as one
would do on a general grid hierarchy.
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5.1 Geometric Multigrid

As a test problem we consider the Poisson equation on the unit square with homoge-
neous Dirichlet boundary conditions:

− �u = f in � := [0, 1]2, u = 0 on � := ∂�. (19)

For this domain, it is straight-forward to construct a nested hierarchy of regular
grids T1, . . . TJ and corresponding P1 finite element spaces V1 ⊂ · · · ⊂ VJ with
n� := dim(V�) = (2� − 1)2. Let (ϕ�

i )
n�

i=1 denote a Lagrange basis in V�.
The geometric multigrid algorithm is presented in Algorithm 2. On each level, a

smoothing iteration is required which we take to be symmetric Gauß–Seidel. The
timings for the setup of the stiffness matrices A� and the prolongation matrices P� on
level � as well as for 10 V-cycles (ν := 2 smoothing steps) of geometric multigrid are
given in Table 1.

From the timings, we observe that the geometric multigrid method (with textbook
convergence rates) requires roughly 1 second per step per million degrees of freedom,
i.e., roughly 5–10 s per million degrees of freedom to solve the problem. For smaller
problems cacheing effects seem to speed up the calculations.

These results for the geometric multigrid method on a uniform grid are now com-
pared with the ASMGmethod for the baltic sea mesh with strong local refinement and
several inclusions.

5.2 ASMG for the Dirichlet problem

Our solver for the unstructured grid from the baltic sea geometry, cf. Fig. 7, is a
preconditioned conjugate gradient method (CG) where the preconditioner is ASMG.
We iterate until the discretisation error on the finest level of the hierarchy is met. In
particular, a nested iteration from the coarsest to the finest level is used to obtain good
initial values.

We consider the baltic sea model problem with homogeneous Dirichlet boundary
conditions. The storage complexity and timings are shown in Table 2. The auxil-
iary grid hierarchy and matrices require roughly 3 times more storage than the given
(unstructured) grid, and the ASMG-CG solve takes approximately 11s per million
degrees of freedom, which is at most two times slower than the geometric multigrid
method.

Table 1 The time in seconds for
the setup of the matrices and for
ten steps of V-cycle (geometric)
multigrid, Algorithm 2

#dof Setup of A, P 10 V-cycles

n9 = 1,050,625 4.3 5.1

n10 = 4,198,401 26.7 39.7

n11 = 16,785,409 108.8 152.3
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Table 2 The storage complexity in bytes per degree of freedom (auxiliary grids, auxiliary matrices and
H-solvers) and the solve time in seconds for an ASMG preconditioned cg-iteration

#dof Aux. storage Storage A Aux. setup ASMG-CG solve (steps)

n4 = 737,933 509 85 45.2 12.4 (5)

n5 = 2,970,149 351 87 124 40.2 (5)

n6 = 11,917,397 281 87 414 125.9 (5)

n7 = 47,743,157 247 88 1360 544.9 (5)

 0

 0.2
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 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45  50

"level 4"
"level 5"
"level 6"
"level 7"

Fig. 11 Convergence rates for Auxiliary Space MultiGrid with n4 = 737, 933, n5 = 2, 970, 149, n6 =
11, 917, 397, and n7 = 47, 743, 157 degrees of freedom (color figure online)

The convergence rates for the ASMG iteration are given in Fig. 11, where we plot
the residual reduction factors for the first 50 steps. We observe that the rates on all
levels are uniformly bounded away from 1, roughly of the size 0.4.

5.3 ASMG for the Neumann problem

In the final test, we consider the baltic seamodel problemwith homogeneousNeumann
boundary conditions. Extra near boundary correction has been applied, cf. Algorithm
3. The storage complexity as well as the timing for the ASMG-CG solve are given in
Table 3 for the model problem with natural Neumann boundary conditions.

We observe that in order to solve the model problem up to the size of the dis-
cretization error, we need to spend twice as much storage for the auxiliary than the
given (unstructured) fine grid, and the solve time is roughly 11s per million degrees
of freedom.

In Fig. 12 we plot the residual reduction factors for 50 steps of ASMG (without CG
acceleration) for 4 consecutive levels. We observe that the rate is level independent
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Table 3 The storage complexity in bytes per degree of freedom (auxiliary grids, auxiliary matrices and
H-solvers) and the solve time in seconds for an ASMG preconditioned cg-iteration

#dof Aux. storage Aux. setup Storage A ASMG-cg solve (steps)

n4 = 756,317 355 34.6 88 11.5 (6)

n5 = 3,006,917 244 80 88 33.3 (6)

n6 = 11,990,933 195 266 88 143.6 (6)

n7 = 47,890,229 172 941 88 520.7 (6)
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 0.6
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 0  5  10  15  20  25  30  35  40  45  50

"level 4"
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"level 6"
"level 7"

Fig. 12 Convergence rates for Auxiliary Space MultiGrid with n4 = 756, 317, n5 = 3, 006, 917, n6 =
11, 990, 933, and n7 = 47, 890, 229 degrees of freedom (color figure online)

and of 0.5, i.e. bounded away from 1, but not as good as the corresponding rate of the
geometric multigrid method.

We conclude that the theoretically proven convergence rates are indeed small
enough to be competitivewith geometricmultigrid in the sense that the storage require-
ments increase by a factor of atmost 3 and the average solving times permillion degrees
of freedom at most by a factor of 2.
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